首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lõhmus  Krista  Ivask  Mari 《Plant and Soil》1995,168(1):89-94
Long-term decomposition and nitrogen dynamics of Norway spruce finest (<1 mm in diameter) and fine (<2 mm in diameter) roots were estimated using the root litter-bag techniques. The seasonal decomposition of the finest roots was investigated in a 40-year-old high site quality stand grown on brown lessive soil at different depths as part of productivity studies. The fine root decomposition studies were conducted on 8 permanent plots in the Estonia with the aim to describe the site variation. The initial material was collected from one of stands (high quality site) and incubated at the depth of 10 cm in 1989 (at one site 1990). The bags were collected once or twice a year except for one site, where the seasonal dynamics was investigated. In all initial and decomposing root samples oven-dry weight, ash and energy content and nitrogen concentration was determined. After five years the finest roots had lost 40% of their initial dry weight, half of it during the first year. The initial concentration of nitrogen was 1.29%, the mean concentrations varied during the incubation from 1.47 to 1.78%. After the first year fine roots had lost 21.0 to 32.7% of their initial dry weight, after two years the weight loss was 22.5 to 43.2%. The initial N concentration in fine roots was 0.73% and in the first years it varied from 0.97 to 1.40% at different sites.  相似文献   

2.
Rhizosphere, fine-root and needle chemistry were investigated in a 28 year old Norway spruce stand in SW Sweden. The uptake and allocation pattern of plant nutrients and aluminium in control plots (C) and plots repeatedly treated with ammonium sulphate (NS) were compared. Treatments started in 1988. Current year needles, one-year-old needles and cylindrical core samples of the LFH-layer and the mineral soil layers were sampled in 1988, 1989 and 1990. Compared to the control plots, pH decreased significantly in the rhizosphere soil in the NS plots in 1989 and 1990 while the SO4-S concentration increased significantly. Aluminium concentration in the rhizosphere soil was generally higher in the NS plots in all soil layers, except at 0–10 cm depths, both in 1989 and 1990. Calcium, Mg and K concentrations also increased after treatment with ammonium sulphate. Ammonium ions may have replaced these elements in the soil organic matter. The NS treatment significantly reduced Mg concentrations in fine roots in all layers in 1990. A similar trend was found in the needles. Ca concentrations in fine roots were significantly lower in the NS plots in the LFH layer in 1990 and the same pattern was found in the current needles. The N and S concentrations of both fine roots and needles were significantly higher in the NS plots. It was suggested that NS treatment resulted in displacement of Mg, Ca and K from exchange sites in the LFH layer leading to leaching of these cations to the mineral soil. Further application of ammonium sulphate may damage the fine roots and consequently adversely affect the water and nutrient uptake of root systems.  相似文献   

3.
Soil acidification and N saturation are considered to affect the decomposition of soil organic matter as well as growth and mortality of fine roots in many forest soils. Here we report from a field experiment where ‘clean rain’ has been applied to the soil for about 10 years under a roofed plot of a 71‐year‐old Norway spruce plantation at Solling, Central Germany. Reduced amounts of protons (?78%), sulphate (?53%), ammonium (?86%), and nitrate (?49%) were sprayed on the soil surface of the clean rain plot between 1992 and 2001. In an adjacent roofed control plot, throughfall was collected and immediately re‐sprinkled below the roof construction without any chemical manipulation. One year before the clean rain treatment started, live and dead fine root masses (≤2 mm) were determined from undisturbed soil cores down to 40 cm mineral soil depth. Total live fine root mass was significantly lower in the clean rain plot than in the control plot. After the first sampling, the soil holes were refilled with quartz sand and repeatedly sampled in June 1992, June 1996, and October 2001. There were no differences in live and dead fine root masses between the plots in 1992 and 1996. In 2001, both live and dead fine root masses of the clean rain plot were about twice as high as in the control plot, indicating that fine root growth recovered in the mineral soil following 10 years of clean rain treatment. Moreover, the clean rain treatment significantly reduced the total N concentrations of live fine roots and 1‐year‐old needles. Our results suggest that the reduced N input promoted fine root growth to compensate N deficiency. Reduced Al concentration in soil solution may have contributed to the recovery of fine root growth, however, the toxicity of Al species is largely unknown. Mean annual soil respiration rate was 24% higher in the period from 2000 to 2001, indicating that the clean rain treatment increased respiration of roots and heterotrophic microorganisms within the rhizosphere. Laboratory incubation of samples from the organic horizon and the top mineral soil revealed no differences between the plots in the decay rate of soil organic matter. Our results suggest that strong reductions in atmospheric N deposition from about 30 to 10 kg N ha?1 yr?1 and decreasing acid stress can have beneficial effects on growth of fine roots in the mineral soil within a decade. We conclude that biological recovery under reduced atmospheric loads can affect the nutrient and carbon budget of spruce soils in the long run.  相似文献   

4.
Extensive investigations on the fine root status of declining and healthy spruce were conducted in several stands at higher elevations of the Bavarian Forest heavily affected by needle yellowing. In most of the root parameters recorded, yellowing trees had significantly lower values than neighbouring green trees. Tight correlations were found between decreasing fine root density and crown transparency, degree of yellowing (increasing) and needle Mg (Ca) contents (decreasing), respectively. Although growing on the same substrate, green trees showed much better Mg (Ca) nutrition than yellow trees, indicating that poor fine root status contributes to Mg (Ca) deficiency in yellowing spruce. Experiments with spruce seedlings growing in soil samples from yellowing stands proved that needle symptoms can easily be reproduced on the seedlings under controlled conditions (i.e. in the absence of adverse atmospheric factors). Furthermore, reduced fine root systems and severe root damage were observed on seedlings grown in soils from yellowing stands, but not on those in soils from green stands. Adding a layer of soil from a yellow stand to a soil from a green stand caused a decrease of root parameters. Needle as well as root symptoms in these experiments were largely ameliorated after soils had been heat (autoclaving, sterilisation) or fungicide treated. Plants from treated soils had significantly longer roots and more root tips. The results of our study indicate that Mg deficiency leading to severe needle yellowing in stands at higher elevations of the Bavarian Forest is at least partially mediated by fine root disorders. Also, strong evidence is presented that fine root damage on trees in the affected stands is caused by soilborne micro-organisms, most likely fungi. Their exact identity, however, still remains to be unravelled.  相似文献   

5.
This study investigated how deep freezing affects the mineral nutrient content of roots and rhizosphere soil. Two different methods of separating the rhizosphere from the roots were used: i) a brushing method, where the rhizosphere soil was brushed off and ii) a washing method, where the rhizosphere was extracted together with the roots.When unfrozen material was used, the concentrations of K and Fe were significantly higher in the washing method as compared with the brushing method. When the material had been deep frozen, significantly higher concentrations of K, Fe, Mg, and Al were found in the extract from the washing method, indicating a considerable leakage from the roots. No significant differences were found between frozen and unfrozen material with the brushing method. In bulk soil, freezing resulted in increased concentrations of Mn, Al and Fe, even when no roots were present. The brushing method can be used for both frozen and fresh material, although fresh material is preferable. Extraction of soil plus roots cannot be recommended for deep frozen soil.  相似文献   

6.
The vitality of fine roots in a Norway spruce stand subjected to application of ammonium sulphate (NS), wood ash (A) and nitrogen-free fertilizer (V) respectively, was investigated using i) vitality classification of fine roots based on morphological characteristics and ii) the triphenyl tetrazolium chloride (TTC) method of estimating dehydrogenase activity.Although the NS-treated areas showed a 30% increase in above-ground production in response to the NS-application, the vitality of the fine-root system in the humus layer appeared to be in a state of deterioration, as indicated by a decrease in fine-root biomass, an increased amount of dead fine (0–1 mm) and small (1–2 mm) roots, a decreased specific root length (SRL = fine root length/fine root dry weight) and an increased dehydrogenase activity. The impact of the the A and V treatments was reflected in a decrease in fine-root biomass and an increase in SRL. The results make it clear that in order to study the vitality of forest trees, both fine-root studies and studies of above-ground tree parts are necessary.  相似文献   

7.
Soil streptomycetes are commonly antagonistic against plant pathogens. However, interactions involving increased defense responses in the host plant, leading to suppression of plant disease development, have not yet been detailed. Here, the mechanisms were studied of disease suppression by Streptomyces sp. GB 4-2 against Heterobasidion root and butt rot in Norway spruce (Picea abies) seedlings. GB 4-2 promoted mycelial growth of the phytopathogenic fungus, germination rate of fungal spores, extension of germ tubes and early colonization of outer cortical layers of the plant root. Reduced colonization of the inner cortical cell layers was accompanied by the induction of cell wall appositions, and increased xylem formation in the vascular cylinder emerged after bacterium-fungus coinoculation. Bacterial treatment led to decreased water content in roots and needles and increased photosynthetic yield (F(v)/F(m)) and peroxidase activities in needles. The infection of needles by Botrytis cinerea was reduced by bacterial pretreatment. Complex interactions of GB 4-2 with Norway spruce and Heterobasidion abietinum were discovered. The bacterium promoted the growth of the phytopathogenic fungus but induced plant defense responses. Host responses indicate that GB 4-2 induces both local and systemic defense responses in Norway spruce.  相似文献   

8.
Persson  Hans  Von Fircks  Yuehua  Majdi  Hooshang  Nilsson  Lars Owe 《Plant and Soil》1995,168(1):161-165
Results of the spatial distribution of fine roots are reported from a Norway spruce (Picea abies (L.) Karst.) in SW Sweden stand subjected to drought (D) and ammonium-sulphate application (NS). The sampling was carried out by excavating monoliths in segments of 0.5 × 0.5 × 0.1 m to a depth of one meter. Root data also included in the study were obtained by excavating whole trees and soil coring.The data suggest a fairly deep distribution pattern of fine roots (< 1 mm in diameter) in the study area compared with other forest sites in SW Sweden. The weight fraction of living fine roots in the LFH-horizon amounted to 53, 36 and 55% of the total fine-root biomass and 12, 30 and 32% of the total fine-root necromass (dead fine roots) in the control, D and NS-treatment areas respectively. Drought seemed to result in a redistribution of fine roots to deeper mineral soil horizons. Ammonium sulphate application led to the reverse, viz, a concentration of fine roots to the LFH-horizon. A significantly smaller fine-root necromass was indicated in the LFH-horizon of the control areas compared with both the D and NS-treatment areas, suggesting a high mortality of fine roots in these areas. A heavy dry matter fraction accumulates in roots > 1 mm in diameter and in stumps. These root fraction, were frequently found between the trees, although the stump constitutes an important fraction in terms of dry weight.  相似文献   

9.
Fine root length production, biomass production, and turnover in forest floor and mineral soil (0–30 cm) layers were studied in relation to irrigated (I) and irrigated-fertilized (IL) treatments in a Norway spruce stand in northern Sweden over a 2-year period. Fine roots (<1 mm) of both spruce and understory vegetation were studied. Minirhizotrons were used to estimate fine root length production and turnover, and soil cores were used to estimate standing biomass. Turnover was estimated as both the inverse of root longevity (RTL) and the ratio of annual root length production to observed root length (RTR). RTR values of spruce roots in the forest floor in I and IL plots were 0.6 and 0.5 y−1, respectively, whereas the corresponding values for RTL were 0.8 and 0.9 y−1. In mineral soil, corresponding values for I, IL, and control (C) plots were 1.2, 1.2, and 0.9 y−1 (RTR) and 0.9, 1.1, and 1 y−1 (RTL). RTR and RTL values of understory vegetation roots were 1 and 1.1 y−1, respectively. Spruce root length production in both the forest floor and the mineral soil in I plots was higher than in IL plots. The IL-treated plots gave the highest estimates of spruce fine root biomass production in the forest floor, but, for the mineral soil, the estimates obtained for the I plots were the highest. The understory vegetation fine root production in the I and IL plots was similar for both the forest floor and the mineral soil and higher (for both layers) than in C plots. Nitrogen (N) turnover in the forest floor and mineral soil layers (summed) via spruce roots in IL, I, and C plots amounted to 2.4, 2.1, and 1.3 g N m−2 y−1, and the corresponding values for field vegetation roots were 0.6, 0.5, and 0.3 g N m−2 y−1. It was concluded that fertilization increases standing root biomass, root production, and N turnover of spruce roots in both the forest floor and mineral soil. Data on understory vegetation roots are required for estimating carbon budgets in model studies.  相似文献   

10.
Summary Phloem conductance of14C-labelled assimilates was investigated in natural stands of Norway spruce showing substantial damage from needle yellowing and needle loss disease. Terminal current-year shoots of a branch were allowed to fix14CO2 (300–600 ppm in air) and carbon dioxide net uptake was monitored with a gas analyser. The difference between14C-uptake and the amount of radiocarbon determined in the photosynthesizing needles was interpreted to reflect assimilate export from the needles to the axis of the tree. Compared with an undamaged control tree,14C-export from the assimilating needles was not impaired in the yellowing tree and only slightly reduced in the tree showing needle loss. Incorporation of14C into starch increased significantly during autumn particularly in the tree showing needle loss. Import of radiocarbon from the14C-labelled phloem sap in twig axes and needles older than 1 year was used as a measure of phloem conductivity of older sections of a branch which showed considerable damage. Carbon uptake by these older plant parts was more pronounced than in undamaged twigs. In the case of older needles enhancement of14C-incorporation suggested an increased sink strength, while the same phenomenon in the twig axes was interpreted as a consequence of partially impaired conductivity of individual sieve elements resulting in an inhomogeneous velocity of phloem transport. The hypothesis is put forward that curtailed viability of the sieve cells is responsible for a delay of transport, which is compensated for by an augmented production of phloem elements from the cambium.  相似文献   

11.
The effects of soil warming and nitrogen availability on root production, longevity and mortality were studied using minirhizotrons in irrigation (C), fertilized (F), heated (H), and heated‐fertilized (HF) plots in a Norway spruce stand in northern Sweden from October 1996 to October 1997. Irrigation was included in all treatment plots. Heating cables were used to maintain the soil temperature in heated plots at 5°C above that in unheated plots during the growing season. A Kaplan–Meier approach was used to estimate the longevity of fine roots and Cox proportional hazards regression to analyze the effects of the H, F, and HF treatments on the risk of root mortality. The proportion of annual root length production contributed by winter–spring production amounted to 52% and 49% in heated plots and heated‐fertilized plots, respectively. The annual root length production in C plots was significantly higher than in other treatments, while the HF treatment gave significantly greater production compared with the F treatment. The risk of mortality (hazard ratio) relative to C plots was higher in H plots (358%) and F plots (191%). The interaction between heating and fertilizing was strongly significant. The increase in the risk of root mortality in combined fertilization and heating (103%) was lower than that in the H or F plots. The results show that nitrogen addition combined with warmer temperatures decreases the risk of root mortality, and fine root production is a function of the length of the growing season. In the future, fertilization combined with the warmer temperatures expected to follow predicted climatic change may increase root production in boreal forests at low fertility sites.  相似文献   

12.
13.
Dieffenbach  A.  Göttlein  A.  Matzner  E. 《Plant and Soil》1997,192(1):57-61
A new approach for non-destructive monitoring of soil solution chemistry in high spatial and temporal resolution for rhizosphere studies is presented. In a 5×10 mm grid, 30 micro suction cups (1mm) were installed in a rhizotron with Norway spruce (Picea abies [L.] Karst.) growing in low pH B-horizon soil. Roots grew through the grid, closely passing the suction cups. Soil solution composition before, during and after root passage was determined. For K+ and Mg2+ a significant decrease of soil solution concentration near root tips and elongation zones was observed, indicating a marked uptake of these elements. Mg2+ concentration was also significantly lowered when the root system aged, suggesting that this ion might also be taken up in older parts of the root system. No influence of growing roots was found on Na+-concentrations.  相似文献   

14.
Norway spruce (Picea abies (L.) Karst.) seedlings were grown in a glasshouse pot experiment in soils from 11 declining and 7 healthy spruce stands from France and Germany. In soils from 9 declining stands, seedlings showed decline symptoms (needle yellowing). Soil pasteurization suppressed the symptoms, and reinoculation of the pasteurized soil with a rhizospheric extract from the corresponding stand re-induced yellowing. This suggests that a deleterious soil microflora is associated with spruce decline. The occurrence of this microflora seems to be correlated with the main chemical characteristics of the soils (low pH, low saturation of the adsorbing complex, low exchangeable Ca2+ and Mg2+, and high level of exchangeable Al). ei]R F Huettl  相似文献   

15.
土壤动物群落结构和多样性可能随凋落物分解进程和基质质量的变化不断改变。为了解亚热带森林凋落叶分解过程中土壤节肢动物群落变化特征,以四川盆地亚热带森林麻栎(Quercus acutissima)和柳杉(Cryptomeria fortunei)凋落叶为对象,于2011-2015年采用分解袋法研究了2种凋落叶分解过程中土壤节肢动物组成、结构和多样性动态变化。整个研究期间,柳杉和麻栎凋落叶分解袋中共捕获土壤节肢动物3855只,分属于16目51科,且均以等节跳科和棘跳科为优势类群;麻栎凋落叶中土壤节肢动物的个体密度随分解进程呈现增加趋势,在分解的1079天达最高值后降低,而柳杉凋落叶则在分解的156天急剧增加后快速降低,2种凋落叶中土壤节肢动物类群数量具有相似的动态变化过程;2种凋落叶中土壤节肢动物总体以菌食性数量比例最高,腐食性最低,且随凋落叶分解进程,植食性土壤节肢动物占比明显下降,菌食性则上升;非度量多维尺度(NMDS)分析显示,2种凋落叶中土壤节肢动物群落组成具有显著差异,聚类分析表明,2种凋落叶土壤节肢动物群落结构相似性随分解进程不断降低。亚热带森林凋落叶分解过程中土壤节肢动物群落组成、结构和多样性受凋落叶类型影响。  相似文献   

16.
凋落物分解过程中的微生物生物量动态对于深入了解森林生态系统凋落物分解机理具有重要意义。为了解高寒山地森林典型树种凋落物分解过程中的微生物生物量动态特征,采用凋落物袋野外原位分解法,研究了海拔2850 m、2950 m、3050 m、3150 m和3250 m树冠中心(CC)与树冠边缘(CE)青海云杉(Picea crassifolia)叶凋落物分解过程中凋落物和土壤中的微生物生物量碳(MBC)、微生物生物量氮(MBN)和微生物生物量磷(MBP)时空动态变化。时间尺度上,不同海拔CC与CE凋落物中的MBC、MBN和MBP在生长季节初期上升,生长季节后期下降;但土壤中的MBC、MBN和MBP却在生长季节初期下降,生长季节后期上升。然而,3050 m海拔CE和3250 m海拔土壤中的MBP含量呈“先下降-后上升-再下降”的倒“N”型变化格局。空间尺度上,凋落物中的MBC和MBN含量高于土壤中的,但MBP出现相反情况;CE处的MBC、MBN和MBP含量均显著(P<0.05)高于CC;总体而言,MBC、MBN和MBP含量以中海拔显著最高(P<0.05),其次为低海拔,高海拔显著最低(...  相似文献   

17.
We studied the effects of mycorrhizal pitch pine (Pinus rigida) roots on litter decomposition, microbial biomass, nematode abundance and inorganic nutrients in the E horizon material of a spodosolic soil, using field microcosms created in a regenerating pitch pine stand in the New Jersey Pinelands. Pine roots stimulated litter decomposition by 18.7% by the end of the 29 month study. Both mass loss and N and P release from the litter were always higher in the presence of roots than in their absence. Nutrient concentrations in decomposing litter were similar, however, in the presence and absence of roots, which suggests that the roots present in the with-root treatment did not withdraw nutrients directly from the litter. The soil was slightly drier in the presence of roots, but there was no discernible effect on soil microbial biomass. The effects of roots on soil extractable inorganic nutrients were inconsistent. Roots, however, were consistently associated with higher numbers of soil nematodes. These results suggest that, in soils with low total C and N contents, roots stimulate greater activity of the soil biota, which contribute, in turn, to faster litter decomposition and nutrient release.Contribution No. 95-22 from the Institute of Marine and Coastal Sciences.Contribution No. 95-22 from the Institute of Marine and Coastal Sciences.  相似文献   

18.
Fine root systems may respond to soil chemical conditions, but contrasting results have been obtained from field studies in non-manipulated forests with distinct soil chemical properties. We investigated biomass, necromass, live/dead ratios, morphology and nutrient concentrations of fine roots (<2 mm) in four mature Norway spruce (Picea abies [L.] Karst.) stands of south-east Germany, encompassing variations in soil chemical properties and climate. All stands were established on acidic soils (pH (CaCl2) range 2.8–3.8 in the humus layer), two of the four stands had molar ratios in soil solution below 1 and one of the four stands had received a liming treatment 22 years before the study. Soil cores down to 40 cm mineral soil depth were taken in autumn and separated into four fractions: humus layer, 0–10 cm, 10–20 cm and 20–40 cm. We found no indications of negative effects of N availability on fine root properties despite large variations in inorganic N seepage fluxes (4–34 kg N ha−1 yr−1), suggesting that the variation in N deposition between 17 and 26 kg N ha−1 yr−1 does not affect the fine root system of Norway spruce. Fine root biomass was largest in the humus layer and increased with the amount of organic matter stored in the humus layer, indicating that the vertical pattern of fine roots is largely affected by the thickness of this horizon. Only two stands showed significant differences in fine root biomass of the mineral soil which can be explained by differences in soil chemical conditions. The stand with the lowest total biomass had the lowest Ca/Al ratio of 0.1 in seepage, however, Al, Ca, Mg and K concentrations of fine roots were not different among the stands. The Ca/Al ratio in seepage might be a less reliable stress parameter because another stand also had Ca/Al ratios in seepage far below the critical value of 1.0 without any signs of fine root damages. Large differences in the live/dead ratio were positively correlated with the Mn concentration of live fine roots from the mineral soil. This relationship was attributed to faster decay of dead fine roots because Mn is known as an essential element of lignin degrading enzymes. It is questionable if the live/dead ratio can be used as a vitality parameter of fine roots since both longevity of fine roots and decay of root litter may affect this parameter. Morphological properties were different in the humus layer of one stand that was limed in 1983, indicating that a single lime dose of 3–4 Mg ha−1 has a long-lasting effect on fine root architecture of Norway spruce. Almost no differences were found in morphological properties in the mineral soil among the stands, but vertical patterns were apparently different. Two stands with high base saturation in the subsoil showed a vertical decrease in specific root length and specific root tip density whereas the other two stands showed an opposite pattern or no effect. Our results suggest that proliferation of fine roots increased with decreasing base saturation in the subsoil of Norway spruce stands.  相似文献   

19.
Persson  Olle A  Eriksson  Harry  Johansson  Ulf 《Plant and Soil》1995,168(1):249-254
Long-term field experiments in Norway spruce stands on fertile sites (site indices 27–35 m) in southwestern Sweden were analysed with respect to volume increment. Three treatments were included (0=No fertilization, N = Fertilization with N, NP = Fertilization with N and P).Volume growth was monitored for 18 years in 10 blocks. No significant differences in annual volume increment between the treatments were detected. Volume increments in the N treatment were 97%, 99% and 107% as high as those in the 0 treatment for the periods 1–5, 6–10 and 11–15 years after the first fertilization. Corresponding values for the NP treatment were 104%, 108% and 110%, indicating that P has a small positive effect.The amount of N-fertilization would correspond to an annual N deposition of 20 kg ha-1 during the next 30 years in southwestern Sweden. For this period, the results imply that this N deposition would not affect the growth of Norway spruce stands on fertile sites.  相似文献   

20.
H. Stienen  J. Bauch 《Plant and Soil》1988,106(2):231-238
In order to determine the primary causes of coniferous fine root damage and disfunction in acidic soils, hydroponic cultures of young spruce in pH neutral, acidic, and metal ion-amended media were established. After five months, physiological stress in the roots was removed by raising the pH in the acid and metal ion-amended cultures to physiological neutrality. The cellular element analytical techniques of x-ray microprobe (EDXA) and laser-micromass-spectroscopy (LAMMA) were applied to samples of various tissues of the cultured spruce. Nutrient uptake by the fine roots was blocked by the following ions in order of decreasing severity: Al3+>H+>Fe3+>Mn2+. Magnesium uptake by the fine root apoplast was greatly inhibited by these blockers as was calcium. Al3+ and Fe3+ act predominantly in the root cortex, while Mn2+ is mobile throughout the whole plant. Besides the roots, nutrient deficiencies are also severe in the shoot bark and needles. Phloem processes might therefore be affected. The ion exchange functions of the fine roots are almost reversed by raising the pH of the solutions; the nutrient cations may then again be taken up by the apoplast and the crown status improved. The consequences of these findings are discussed with regard to soil processes and fertilization (liming) treatments under field conditions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号