首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The decline of Greek fir (Abies cephalonica Loudon) has been reported throughout Greece during the last three decades. The symptoms include crown dieback, needle discoloration and loss, death of twigs, branches or whole tree death. A number of causes for the fir decline have been proposed such as drought, climatic change, air pollution and pathogens or insects. Our studies have focused on the relationship between fir decline symptoms and root growth and condition. The crown and root condition of fir trees, at different stages of decline, were assessed and the results showed that root condition was related to needle loss and crown discoloration. Declining trees were characterized by a decreased portion of fine root biomass. No significant differences in total root length and number of roots for each root order were found. In conclusion, our studies showed that the crown condition of Greek firs is reflected on root condition.  相似文献   

2.
The hydraulic architecture of balsam fir (Abies balsamea)   总被引:1,自引:0,他引:1  
Leaf-specific conductivities (LSCs – hydraulic conductivity per dry weight of supplied leaves). Huber values (transverse sapwood area per dry weight of supplied leaves), specific conductivity (hydraulic conductivity per transverse sapwood area) and tracheid diameters were measured throughout the trunk and crown of 20-year-old trees of Abies balsamca (L.) Mill. Measured specific conductivity was proportional to the radius to the fourth power of tracheids. LSCs, which indicate the relative water availability to different plant parts, are much higher in the trunk than in first order branches, and lowest in second order branches. The structural basis for this "hydraulic hierarchy" lies both in Huber values and in tracheid diameters. For similar diameter stem segments, there was no statistically significant difference for trunks versus branches in specific conductivity. However, in old parts of the tree, trunks are wider than supported branches and producer wider tracheids resulting in greater specific conductivities than in branches. In vigorous trees with strong apical control, Huber values were 12.0 times greater in the trunk than in similar diameter branch segments. In slow-growing trees with weak apical control, Huber values were 2.2 times greater in the trunk versus similar branch segments.  相似文献   

3.
水曲柳根系生物量、比根长和根长密度的分布格局   总被引:39,自引:3,他引:39  
采用连续钻取土芯法在生长季内对东北林业大学帽儿山实验林场17年生水曲柳人工林根系取样,研究水曲柳不同直径根系现存生物量、比根长和根长密度及垂直分布状况.结果表明,水曲柳人工林根系总生物量为1 637.6 g·m-2,其中活根生物量占85%,死根占15%.在活根生物量当中,粗根(直径5~30 mm)占的比例最高(69.95%),其次为活细根(直径<1 mm,13.53%),小根(1~2 mm)和中等直径的根(2~5 mm)比例较小(分别为7.21%和9.31%).直径<1 mm活细根的比根长为32.20 m·g-1,直径5~30 mm粗根的比根长为0.08 m·g-1.单位面积上活根的总长度为6 602.54 m·m-2,其中直径<1 mm的细根占92.43%,其它直径等级则不到活根总长度的8%.直径<1 mm的细根生物量与根长密度具显著线性关系(R2=0.923),但与比根长无显著相关关系(R2=0.134).  相似文献   

4.
Eugenia grandis (Wight) is grown in urban environments throughout Malaysia and root systems are often damaged through trenching for the laying down of roads and utilities. We investigated the effect of root cutting through trenching on the biomechanics of mature E. grandis. The force necessary to winch trees 0.2 m from the vertical was measured. Trenches were then dug at different distances (1.5, 1.0 and 0.5 m) from the trunk on the tension side of groups of trees. Each tree was winched sideways again and the uprooting force recorded. No trenches were made in a control group of trees which were winched until failure occurred. Critical turning moment (TMcrit) and tree anchorage rotational stiffness (TARS) before and after trenching were calculated. Root systems were extracted for architectural analysis and relationships between architectural parameters and TMcrit and TARS were investigated. No differences were found between TMcrit and trenching distance. However, in control trees and trees with roots cut at 1.5 m, significant relationships did exist between both TMcrit and TARS with stem dimensions, rooting depth and root plate size. TARS was significantly decreased when roots were cut at 0.5 m only. Surprisingly, no relationships existed between TMcrit and TARS with any root system parameter when trenching was carried out at 0.5 or 1.0 m. Our study showed that in terms of TARS and TMcrit, mechanical stability was not greatly affected by trenching, probably because rooting depth close to the trunk was a major component of anchorage.  相似文献   

5.
Our knowledge of the root system architecture of trees is still incomplete, especially concerning how biomass partitioning is regulated to achieve an optimal, but often unequal, distribution of resources. In addition, our comprehension of root system architecture development as a result of the adaptation process is limited because most studies lack a temporal approach. To add to our understanding, we excavated 32-year-old Pinus ponderosa trees from a steep, forested site in northern Idaho USA. The root systems were discretized by a low magnetic field digitizer and along with AMAPmod software we examined their root traits (i.e. order category, topology, growth direction length, and volume) in four quadrants: downslope, upslope, windward, and leeward. On one tree, we analyzed tree rings to compare the ages of lateral roots relative to their parental root, and to assess the occurrence of compression wood. We found that, from their onset, first-order lateral roots have similar patterns of ring eccentricity suggesting an innate ability to respond to different mechanical forces; more root system was allocated downslope and to the windward quadrant. In addition, we noted that shallow roots, which all presented compression wood, appear to be the most important component of anchorage. Finally, we observed that lateral roots can change growth direction in response to mechanical forces, as well as produce new lateral roots at any development stage and wherever along their axis. These findings suggest that trees adjust their root spatial deployment in response to environmental conditions, these roots form compression wood to dissipate mechanical forces, and new lateral roots can arise anywhere and at any time on the existing system in apparent response to mechanical forces.  相似文献   

6.
大田期烟草根系构型参数的动态变化   总被引:8,自引:1,他引:8  
采用“根箱”法研究了大田期烟草根系构型参数在时间、空间上的动态变化.结果表明, 烟草2级侧根总长度的增加明显大于1级侧根,根快速增长期分别出现在移栽后26~40和56~70 d.栽后57 d(打顶)前,烟草根系的分枝密度表现为10~20>0~10>20~30>30~40 cm,此后随土层的加深呈递减趋势.在主根上,以7~21 cm范围内的分枝密度最大.打顶前,比根长随着入土深度的加深而递增;栽后90 d,比根长随土层的加深而递减.1级侧根根长密度在0~10 cm土层内的变化呈“S”型曲线,10~20、20~30和30~40 cm内表现为双峰曲线;2级侧根根长密度随生育期的进程而增加,其中0~10 cm根长密度的变化为“S”曲线,其它层次为单峰曲线.  相似文献   

7.
8.
Osmotic regulation of root system architecture   总被引:14,自引:0,他引:14  
Although root system architecture is known to be highly plastic and strongly affected by environmental conditions, we have little understanding of the underlying mechanisms controlling root system development. Here we demonstrate that the formation of a lateral root from a lateral root primordium is repressed as water availability is reduced. This osmotic-responsive regulatory mechanism requires abscisic acid (ABA) and a newly identified gene, LRD2. Mutant analysis also revealed interactions of ABA and LRD2 with auxin signaling. Surprisingly, further examination revealed that both ABA and LRD2 control root system architecture even in the absence of osmotic stress. This suggests that the same molecules that mediate responses to environmental cues can also be regulators of intrinsic developmental programs in the root system.  相似文献   

9.
10.
Summary In a solution culture study the absorption of Ca in the shoot of cucumber (Cucumis sativus L.) and various root parameters viz fresh weight, dry weight, length and surface area were measured at weekly intervals. All the root parameters were significantly correlated (p=0.01) with the amount of Ca absorbed when the concentration of Ca was such (5 meq/l) that the absorption capacity of the root membrane was fully saturated. The use of this relationship has been suggested in estimating the amount of roots developed in the soil system where identical conditions exist with respect to Ca concentration. Such estimated values have been termed as equivalent root length or equivalent root surface area as the case may be. P and K flux into the roots growing in the soil system have been worked out from these estimates of root parameters.  相似文献   

11.
Numerous studies have explored the effect of environmental conditions on a number of plant physiological and structural traits, such as photosynthetic rate, shoot versus root biomass allocation, and leaf and root morphology. In contrast, there have been a few investigations of how those conditions may influence root respiration, even though this flux can represent a major component of carbon (C) pathway in plants. In this study, we examined the response of mass-specific root respiration (μmol CO2 g−1 s−1), shoot and root biomass, and leaf photosynthesis to clipping and variable soil moisture in two C3 (Festuca idahoensis Elmer., Poa pratensis L.) and two C4 (Andropogon greenwayi Napper, and Sporobolus kentrophyllus K. Schum.) grass species. The C3 and C4 grasses were collected in Yellowstone National Park, USA and the Serengeti ecosystem, Africa, respectively, where they evolved under temporally variable soil moisture conditions and were exposed to frequent, often intense grazing. We also measured the influence of clipping and soil moisture on specific leaf area (SLA), a trait associated with moisture conservation, and specific root length (SRL), a trait associated with efficiency per unit mass of soil resource uptake. Clipping did not influence any plant trait, with the exception that it reduced the root to shoot ratio (R:S) and increased SRL in P. pratensis. In contrast to the null effect of clipping on specific root respiration, reduced soil moisture lowered specific root respiration in all four species. In addition, species differed in how leaf and root structural traits responded to lower available soil moisture. P. pratensis and A. greenwayi increased SLA, by 23% and 33%, respectively, and did not alter SRL. Conversely, S. kentrophyllus increased SRL by 42% and did not alter SLA. F. idahoensis responded to lower available soil moisture by increasing both SLA and SRL by 38% and 33%, respectively. These responses were species-specific strategies that did not coincide with photosynthetic pathway (C3/C4) or growth form. Thus, mass-specific root respiration responded uniformly among these four grass species to clipping (no effect) and increased soil moisture stress (decline), whereas the responses of other traits (i.e., R:S ratio, SLA, SRL) to the treatments, especially moisture availability, were species-specific. Consequently, the effects of either clipping or variation in soil moisture on the C budget of these four different grasses species were driven primarily by the plasticity of R:S ratios and the structural leaf and root traits of individual species, rather than variation in the response of mass-specific root respiration.  相似文献   

12.
13.
A computer program is presented which measures the length, branching patterns and distribution of link length within a root system. The program skeletonizes digitized images of root systems, loads these images into a binary tree data structure and uses this data structure to characterize the root systems. Measurements of the root length and topological parameters of root systems of Senecio vulgaris made by hand and by computer program were linearly related, with r2 values greater than 0.99 in all cases.  相似文献   

14.
Abstract. The coarse‐root dynamics of ramets of Populus tremuloides (aspen) were investigated with respect to persistence of the original root connections (roots of parent trees from which the ramets originated), the time of establishment of new roots at the base of the stem and the fate of the communal root system after death of individual trees. Parts of the root systems of three declining stands of aspen ramets were hydraulically excavated. From each stand, sections of all structural roots were collected at the base of live and dead trees and were analysed using dendrochronology techniques. Parent roots were identified in the root system of every tree. The trees initiated new structural roots shortly after suckering. Live roots were often connected to the stump of dead and decayed trees. Grafting was common, especially at or near the stumps. Death of trees along the parent roots over time did not seem to favour the entry of significant decay, nor promote breakage of the original root connections. Instead of becoming independent of the parent root system the ramets incorporated the parent roots into their own root systems, remaining interconnected.  相似文献   

15.
不同林龄胡杨克隆繁殖根系分布特征及其构型   总被引:7,自引:0,他引:7  
以中龄林和成熟林胡杨为研究对象,采用挖剖面和根窗的方法,研究胡杨繁殖根系分布、根系构型,以及胡杨根蘖与繁殖根系构型之间的关系。结果表明:(1)细根(d<2 mm)的根长密度、根表面积密度,随深度增加呈现指数函数分布;(2)中龄林细根的根长密度、根表面积密度在0—90 cm各层都是显著大于成熟林的对应指标(P<0.05),成熟林的中等粗根(5 mm0.05),且两种林龄的一级侧根数、分枝角度亦无显著差异(P>0.05);(5)对比两种林龄不同根序上的根蘖芽发现,二级根上不定芽个数均是同组一级根上不定芽个数的3—4倍;基于以上对胡杨根系的功能权衡的分析,得出:细根对胡杨根系构型有重要的影响,在胡杨根系功能权衡中扮演重要角色。  相似文献   

16.
17.
18.
The objective of this work was to study elongation curves of maize axile roots throughout their elongation period under field conditions. Relationships between their elongation rate and the extension rate of their branched region were also studied. Maize, early-maturing cultivar Dea, was grown on a deep, barrier-free clay loam (depth 1.80m). Trenches were dug during four periods until after silking and axile roots were excavated. Parameters measured were total length and the lengths of basal and apical unbranched zones. The rank of the bearing phytomer and general data about the carrying plant were also recorded. Results showed that axile roots from lower phytomers had similar elongation rates irrespective of the rank of the carrying phytomer. This elongation rate declined with root age. A monomolecular elongation model was fitted to the experimental data. Elongation was much slower in roots from upper phytomers. A rough linear relationship was found between the elongation rate of axile roots and the length of the apical unbranched zone. This result suggests that laterals appeared on a root segment a constant time after it was formed. Possible mechanisms with may account for the declining elongation rate with root age (increasing distance from aerial parts or adverse environmental conditions in deep soil layers) and variability between individual roots are also discussed.  相似文献   

19.
Plant allometry that is related to plant architecture and biomass allocation strongly influences a plants ability to grow in shaded forest understory. Some allometric traits can change with plant size. The present study compared crown and trunk allometries, root/shoot biomass allometry, and root architecture among understory saplings (0.25--5m height, except for two trees > 5 < 7 m) of seven deciduous dicotyledonous species in central Japan. Associations of the crown and trunk allometries with several plant morphological attributes were analyzed. Branch morphology (plagiotropyvs orthotropy) and life size were correlated with sapling crown and trunk allometries. Both large leaves and orthotropic branches were associated with a narrow small crown and slender trunk. The root/shoot ratio decreased rapidly with increasing plant height for saplings shorter than about 1.5 m. Less shade-tolerant species tended to have smaller root/shoot ratios for saplings taller than 1.5 m. With an increase in plant height, the branch/trunk biomass ratio decreased for saplings with plagiotropic branches but increased for saplings with orthotropic branches. Four subcanopy species (Acer distylum, Carpinus cordata, Fraxinus lanuginosa and Acanthopanax sciadophylloides) had superficial root systems; a common understory species (Sapium japonica) had a deep tap root system; and a canopy species (Magnolia obovata) and a subcanopy species (Acer tenuifolium) had heart root systems of intermediate depth. The root depth was not related to shade tolerance. Among species of the same height, the difference in fine root length can be 30-fold.  相似文献   

20.
基于根系发育分级标准分析不同等级根系的形态特征和各级根系的生长发育策略, 可以为未来成熟林木根系预测和模型构建提供参考。该研究以30多年生的两个毛白杨(Populus tomentosa)和一个刺槐(Robinia pseudoacacia)的根系系统为研究对象, 通过全挖法获取研究材料, 以Rose (1983)提出的发育分级标准作为根系分级标准, 分析了不同等级根系的基径、根长、连结长度、根系数量等形态特征以及不同等级根系间的拓扑关系。研究结果表明: 1) 3个根系系统的修正拓扑指数qaqb均接近于0, 拓扑指数TI均接近于0.5, 说明3个根系系统均呈现叉状分支; 3个根系系统垂直分布最深达到5.7-6.4 m, 水平分布最长达到7.6-13.5 m; 同一树种根系存在连生关系。2) 3个根系系统能够分支到7-8级根; 一级根基径和长度显著高于后几级根, 一级根基径是后几级根的5.79-36.92倍, 一级根长度是后几级根的1.45-9.11倍; 根系数量随着根系等级增加先增后减, 在三级根上达到最大值。3)在前三级根中, 各级根上的连结长度从根基到根尖变化不大, 说明子级根在母级根上分布均匀, 能够充分高效地吸收土壤资源。4)母级根对子级根的基径拟合线性方程斜率, 一级根最小(平均斜率0.15), 二级根和三级根的斜率相差不大(平均斜率0.34、0.35), 说明一级根优先发育自身直径, 达到锚固和支撑的作用, 二、三级根则会优先发育子级根, 通过不断增强子级根以达到高效占领土壤空间的目的。5)基径对长度的拟合线性方程斜率随着根系等级增加而增加(平均斜率从10.46增长至90.43), 说明高级别根系会倾向于发展根系长度来达到探索资源、拓展空间的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号