首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
为研究间伐改形对红富士成龄乔化密植果园树体冠层特征、生育后期叶片生理特性、养分积累分配规律、光合生产力和土壤水分时空分布动态的影响,以18年生‘红富士’苹果密闭园为试材,对苹果树单株结构参数、枝量、枝类组成、覆盖率、叶片光合速率等参数进行测定.结果表明: 密闭果园叶片光合作用受非气孔因素限制,导致PSII最大光化学效率、PSII光合潜能、光合性能指数下降了1.2%、11.5%、13.9%.间伐改形后,叶面积指数、树冠覆盖率有所降低,使得冠层直射光透过系数增加了79.0%,树形结构有所改善.苹果园总枝数降低到约1100400条·hm-2,单株枝量增加了5.0%,短枝比例提高至73.0%.由于冠层光照条件的改善,叶面积、比叶质量、百叶重、叶绿素含量有不同程度的提高.叶片光合速率的提高促进了光合产物的积累,淀粉、蛋白质含量为密闭果园的143.5%、107.8%.叶片的发育质量与其所处的光照辐射环境有着密切联系,密闭果园经间伐、改形后,果园群体结构和冠层光照得以改善,促进了叶片生长发育,提高了叶片光合效能,降低了果园土壤水分的无效消耗,是陇东旱塬苹果产区密闭果园适宜的调整、优化方案.  相似文献   

2.
Water relations are a key factor limiting olive production. In this study, effects of plating density on physiological aspects and productivity of ‘Chemlali’ olive trees were analyzed under rain-fed conditions in four planting densities (156, 100, 69 and 51 trees ha−1), in an experimental olive orchard located in the center of Tunisia. Seasonal changes in leaf relative water content (RWC), leaf water potential, stomatal conductance (g s), CO2 assimilation rate and tree production were studied. Accompanying the changes in leaf water status, all the monitored trees reduced leaf stomatal conductance (g s) and photosynthetic rate (A) throughout the summer drought, mirroring the increase in soil moisture deficit and vapor pressure deficit. However, the decrease in gas exchange was much more pronounced in high planting densities than in low ones. Our results confirm that the increase of tree-to-tree water competition with planting density was significant in the dry climate of Tunisia. Thus, planting density is critical when planting new olive orchards in arid regions.  相似文献   

3.
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per‐area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO2 assimilation. We developed a two‐fraction leaf (sun and shade), two‐layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leaf quantity, quality, and within‐canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground‐based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two‐fraction leaf, two‐layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance‐derived CO2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.  相似文献   

4.
We conducted ecosystem carbon and water vapour exchange studies in an old‐growth Pinus ponderosa forest in the Pacific North‐west region of the United States. The canopy is heterogeneous, with tall multiaged trees and an open, clumped canopy with low leaf area. Carbon assimilation can occur throughout relatively mild winters, although night frosts can temporarily halt the process and physiological factors limit its efficiency. In contrast, carbon assimilation is often limited in the ‘growing season’ by stomatal closure associated with high evaporative demand (D) and soil water deficits. All of these factors present a challenge to effectively modelling ecosystem processes. Our objective was to generate an understanding of the controls on ecosystem processes across seasonal and annual cycles from a combination of fine‐scale process modelling, ecophysiological measurements, and carbon and water vapour fluxes measured by the eddy covariance method. Flux measurements showed that 50% and 70% of the annual carbon uptake occurred outside the ‘growing season’ (defined as bud break to senescence, ~ days 125–275) in 1996 and 1997. On a daily basis in summer, net ecosystem productivity (NEP) was low when D and soil water deficits were large. Whole ecosystem water vapour fluxes (LE) increased from spring to summer (1.0–1.9 mm d?1) as conducting leaf area increased by 30% and as evaporative demand increased, while evaporation from the soil surface became a smaller portion of total LE as soil water deficits increased. The models underestimated soil evaporation, particularly following rain. In the SPA model, varying the temperature optimum for photosynthesis seasonally resulted in overestimation of carbon uptake in winter and spring, showing that in coniferous forests, assumptions about temperature optima are clearly important. Daily estimates of soil surface CO2 flux from measurements and site meteorological data demonstrated that modelling of soil CO2 flux based on an Arrhenius‐type equation in CANPOND overestimated CO2 respired from the soil during drought and when temperatures were low.  相似文献   

5.
A model of dynamics of leaves and nitrogen is developed to predict the effect of environmental and ecophysiological factors on the structure and photosynthesis of a plant canopy. In the model, leaf area in the canopy increases by the production of new leaves, which is proportional to the canopy photosynthetic rate, with canopy nitrogen increasing with uptake of nitrogen from soil. Then the optimal leaf area index (LAI; leaf area per ground area) that maximizes canopy photosynthesis is calculated. If leaf area is produced in excess, old leaves are eliminated with their nitrogen as dead leaves. Consequently, a new canopy having an optimal LAI and an optimal amount of nitrogen is obtained. Repeating these processes gives canopy growth. The model provides predictions of optimal LAI, canopy photosynthetic rates, leaf life span, nitrogen use efficiency, and also the responses of these factors to changes in nitrogen and light availability. Canopies are predicted to have a larger LAI and a higher canopy photosynthetic rate at a steady state under higher nutrient and/or light availabilities. Effects of species characteristics, such as photosynthetic nitrogen use efficiency and leaf mass per area, are also evaluated. The model predicts many empirically observed patterns for ecophysiological traits across species.  相似文献   

6.
Abstract 1 The presence and abundance of arthropods were compared in three olive orchards under organic, integrated and conventional management regimes. In each olive orchard, trees were sampled in the canopy by beating branches and soil arthropods by placing pitfall traps. Contrary to expectations, the highest abundance of arthropods occurred in the integrated management orchard. The most abundant groups were Formicidae and the species Euphyllura olivinae (Homoptera: Psyllidae). 2 Canopies and the soil under the tree canopy (interior soil) were selected as the most informative sites for sampling. The months with the strongest differences were May, June and July, especially June. In the canopy, Araneae, Coleoptera, Diptera, Heteroptera, Hymenoptera, Homoptera, Lepidoptera, Neuroptera and Thysanoptera were the most abundant, and showed significant differences in abundance among orchards with different management regimes. Moreover, in the canopies, Coleoptera and Lepidoptera showed a seasonal pattern of abundance and consistent significant differences between the organic orchard vs. the integrated and conventional ones in both years of study. In the soil, 12 orders showed significant differences in abundance among management regimes at some point of the sampling season. 3 In a search for biological indicators that could help to distinguish between management regimes, a discriminant analysis applied to the data indicated that only the samples from the canopy were classified according to their management regime in a consistent way over time. The groups selected by the analysis to establish differences among management regimes were Coleoptera, Diptera, Heteroptera, Lepidoptera and Thysanoptera. The analysis applied to compare organic vs. non‐organic olive orchards, again identified Coleoptera and Lepidoptera as suitable groups. The results suggest that these two orders are potential bioindicators to distinguish, in a simple way, organic olive orchards from non‐organic ones.  相似文献   

7.
本文根据Wang和BMdocchi(1989)最近提出的冠层辐射模型,进一步给出了一个模拟冠层光合作用速率和气孔传导率的模式.模式将冠层中每一层的叶面积分为向光叶、半影叶、和全遮荫叶三种,并分别计算其光合作用速率和气孔传导率。计算得到的光合速率廓线表明,在落叶阔叶林内,冠层下部的叶片常处于光照不足状态;半影效应使得透过林冠达于底部的辐射量增大,这对于林下植物的光合作用是有利的。 模式计算值与实测值之间的微弱差别应归因于纯辐射模型无法考虑湍流输送机制造成的CO_2传输和冠层底部耐荫性叶对于低光照的适应能力。  相似文献   

8.
Main processes governing the plant-soil interactions in adult olive (Olea europaea L.) trees under fertigation were studied to better understand the response of the trees to this agricultural practice widely used in new olive orchards. Our final objective was to obtain soundly based scientific evidences for a rational choice of the fertilizer dose. Measurements were made in a ‘Manzanilla de Sevilla’ olive orchard in which 200 g N, 400 g N and 600 g N per tree and irrigation period (T200, T400 and T600, respectively) of a 4N-1P-3K fertilizer were applied by fertigation for 5 years (1999–2003); a control treatment (unfertilized) was also established. Four years after the start of the experiment mean values of soil P and K concentrations were greater in the fertigation treatments than in the control. For K, concentrations increased with fertilizer dose. The profile of NO3-N, P and K concentrations within the irrigation wetted zone was studied in 2003; in the top soil layer, the concentrations of the three elements increased with fertilizer dose, generally showing linear responses to the different doses; in deeper soil layers, concentrations also increased with fertigation, but to a lesser extent; the concentrations of NO3-N, P and K recorded at 0.8–0.9 m depth in the soil of T600, together with observations of root distribution, were enough to suggest leaching losses and possible groundwater contamination. As a consequence of the higher soil nutrient availability, leaf N, P and K increased generally with dose. Leaf N deficiencies and low, but not deficient, leaf K levels were found in control trees in 2002 and 2003, as well as in T200 trees in 2003. Differences between treatments in shoot length, trunk circumference and canopy volume were not significant, for any studied year. Nevertheless, between February 1999 and November 2003 there was a significant increase in canopy volume with fertilizer dose. In 2003, fruit yield increased with fertilizer dose, as a consequence of an increase both in fruit number and weight. Cumulative yield for the experimental period also increased with fertilizer dose. These results are further evidence to confirm previous research made with the same experimental set-up: T400 for oil quality and T600 for table olive quality seem to be the most appropriate treatments, although there is a risk for leaching losses and the possibility of groundwater contamination with T600.  相似文献   

9.
Responses of photosynthetic rate and stomatal conductance to water stress as weI1 as the relationship between photosynthetic rate and stomatal conductance were investigated with soybean cultivars “Ludou No. 4” and “7605”. The former was a high yield cultivars widely used in Shandong province, and the latter was a small grain soybean line bred by Shandong Academy of Agricultural science. Soil water stress decreased leaf apparent photosynthetic rate and stomatal conductance of two soybean cultivars, and “Ludou No. 4” decreased more than “7605”. At the same value of water potential, photosynthetic rate and stomatal conductance of “7605” were higher than those of “Ludou No,4”,but the rate of stomatal closure for “7605” was higher than “Ludou No. 4”. Decreasing of stomatal conductance caused rising of leaf temperature of two soybean cultivars, and the rising of “7605” was more rapid than “Ludou No. 4”, but at the same treatment of water stress, leaf temperature of “Ludou No. 4” was higher than “7605”. Leaf water use efficiecy (WUE) of two soybean cultivars were decreased under water stress, and the rate of decreasing in “Ludou No.4” was more rapid than in “7605”. These results showed that “7605” was more resistant to water:stress than “Ludou No. 4”.  相似文献   

10.
不同平茬年限人工柠条林光合特性及土壤水分的响应变化   总被引:1,自引:0,他引:1  
平茬是荒漠草原老化人工柠条林营林抚育的重要措施,为系统认识柠条平茬后连续的生理与生态响应过程及其变化规律,该研究设置对比观测样地,以未平茬柠条(WPC)为对照,以平茬后连续生长1~5年(PC1~PC5)的柠条为处理,对各样地柠条净光合速率、蒸腾速率、气孔导度、胞间CO2浓度、水分利用效率等光合生理特征及其土壤含水量分布的影响进行测定分析。结果表明:(1)平茬处理对柠条生理特性的影响因平茬年限的增加而异,其中PC1和PC2柠条的净光合速率和蒸腾速率较WPC略有提高,PC1柠条处于补偿生长的活跃期,水分利用效率明显高于其他平茬处理,PC2柠条的水分利用效率开始下降;PC3和PC4的柠条蒸腾速率、净光合速率和气孔导度显著上升,且PC4处理下达到最大值,相应水分利用效率也逐步回升;PC5的柠条几乎不存在补偿性生长,净光合速率、蒸腾速率和水分利用效率开始回落,逐渐接近WPC;平茬措施对PC1与PC5柠条胞间CO2浓度大小的影响较大。(2)PC1的土壤水分含量在0~100cm土层因受冠层截留大幅减小的影响而低于其他年限平茬处理;PC2的土壤水分略有改善,PC3、PC4的土壤含水量显著提高,PC5的土壤水分状况则逐渐接近于WPC。(3)随平茬年限的增加,柠条光合特性与土壤含水量间存在一定的动态互馈关系,其中PC1的土壤水分略有下降,柠条生长减缓;PC2土壤含水量逐步恢复;PC3土壤含水量增长幅度开始下降,柠条的各项生理指标上升;PC4柠条的光合生理指标、土壤含水量都达到了最高值;PC5柠条的各项指标开始下降。研究发现,PC4处理是柠条光合生理和土壤水分响应变化的拐点,可参考作为平茬柠条优化管理的一个时间节点。  相似文献   

11.
在甘肃河西走廊中部黑河中游绿洲边缘区,于6月下旬和8月上旬,利用Li-8100土壤碳通量测定系统与改进的同化箱联合对田间条件下早熟陆地棉(Gossypium hirsutum)品种新陆早8号的群体光合特性进行了研究.结果表明:试验地6月下旬的土壤呼吸速率和土壤蒸发速率显著高于8月上旬(P<0.01);棉花群体光合速率日变化均呈“单峰型”,6月下旬的群体光合速率显著高于8月上旬,其日平均值分别为(43.11±1.26)和(24.53±0.60)μmol CO2·m-2·s-1, 差异极显著(P<0.01);群体蒸腾速率日变化也呈“单峰型”,6月下旬和8月上旬的日平均值分别为(3.10±0.34)和(1.60±0.26)mmol H2O·m-2·s-1,两者存在极显著差异(P<0.01);6月下旬和8月上旬的群体水分利用效率日平均值分别为(15.67±1.77)和(23.08±5.54) mmol CO2·mol-1 H2O,但差异不显著(P>0.05).两生育时期棉花群体光合速率与温度、光合有效辐射及土壤含水量均呈正相关关系.表明棉花群体光合速率在6月下旬和8月上旬均没有出现中午光合下调,8月由于土壤水分降低和植物叶片衰老,棉花群体光合速率和蒸腾速率显著降低,但水分利用效率并无显著下降.  相似文献   

12.
以河西走廊沙漠典型的荒漠植物泡泡刺群落为材料,运用LI-8100土壤碳通量测定系统与改进的同化箱联合对其7月和8月中旬的群体光合作用进行了测定,分析群体光合速率与立地环境因子的关系,探讨泡泡刺群体对干旱荒漠环境的光合适应机制。结果表明,7月中旬泡泡刺的土壤呼吸速率和蒸发速率均高于8月中旬,而其同期群体光合速率和水分利用效率也显著高于8月中旬。两时期的光合有效辐射是影响泡泡刺群体光合速率的主要因子,于7、8月中旬对泡泡刺群体的光合速率起着直接作用;同时,实验地8月中旬的空气相对湿度也能通过与大气温度以及光合有效辐射的相互作用对泡泡刺群体的光合速率产生较大影响。在7月中旬高温强光环境下,泡泡刺的群体光合速率高于8月中旬,从而说明泡泡刺对高光强、高温的荒漠环境具有较好的适应性。  相似文献   

13.
北方半干旱草原生态系统光合参数的季节和年际变异 生态系统表观量子效率(α)、最大光合速率(Pmax)和暗呼吸速率(Rd)不仅反映了生态系统水平 光合生理特征,同时也是碳循环模型中光合过程模拟的关键参数。气候和植被因子都会影 响光合参数的季节和年际变异,但二者在光合参数调控过程中的相对贡献和作用途径尚不清晰。本研究基于连续12年(2006–2017)的涡度相关观测数据,分析了内蒙古半干旱典型草原光合参数的季节和年际变化规律;利用回归分析和结构方程模型(SEM)方法明晰了环境和生理调控的作用途径及相对贡献。结果发现,光合参数(α、Pmax和Rd)均表现出单峰的季节变化趋势,并呈现明显的年际波动。温度(Ta)和土壤含水量(SWC)的变化共同影响光合参数的季节变化,而SWC主导了其年际变异。α和Rd的变化主要由Ta决定,而Pmax的变化主要受SWC的影响。SEM模型分析表明,除了直接作用外,环境因子主要通过影响冠层水平气孔导度(gc)对光合参数和碳同化生理过程进行调控。此外,叶面积指数对光合参数特别是Pmax的季节和年际变异起主要调控作用。以上结果明确了环境和植被共同决定了生态系统水平光合参数的季节和年际变异,并强调了在水分受限的草原生态系统中,植被生理调控在光合碳同化能力和碳汇功能评估中的重要作用。  相似文献   

14.
Rhizophora mangle L., the predominant neotropical mangrove species, occupies a gradient from low intertidal swamp margins with high insolation, to shaded sites at highest high water. Across a light gradient, R. mangle shows properties of both “light-demanding” and “shade-tolerant” species, and defies designation according to existing successional paradigms for rain forest trees. The mode and magnitude of its adaptability to light also change through ontogeny as it grows into the canopy. We characterized and compared phenotypic flexibility of R. mangle seedlings, saplings, and tree modules across changing light environments, from the level of leaf anatomy and photosynthesis, through stem and whole-plant architecture. We also examined growth and mortality differences among sun and shade populations of seedlings over 3 yr. Sun and shade seedling populations diverged in terms of four of six leaf anatomy traits (relative thickness of tissue layers and stomatal density), as well as leaf size and shape, specific leaf area (SLA), leaf internode distances, disparity in blade–petiole angles, canopy spread: height ratios, standing leaf numbers, summer (July) photosynthetic light curve shapes, and growth rates. Saplings showed significant sun/shade differences in fewer characters: leaf thickness, SLA, leaf overlap, disparity in bladepetiole angles, standing leaf numbers, stem volume and branching angle (first-order branches only), and summer photosynthesis. In trees, leaf anatomy was insensitive to light environment, but leaf length, width, and SLA, disparities in bladepetiole angles, and summer maximal photosynthetic rates varied among sun and shade leaf populations. Seedling and sapling photosynthetic rates were significantly depressed in winter (December), while photosynthetic rates in tree leaves did not differ in winter and summer. Seasonal and ontogenetic changes in response to light environment are apparent at several levels of biological organization in R. mangle, within constraints of its architectural baiiplan. Such variation has implications for models of stand carbon gain, and suggest that response flexibility may change with plant age.  相似文献   

15.
Seasonal drought can severely impact leaf photosynthetic capacity. This is particularly important for Mediterranean forests, where precipitation is expected to decrease as a consequence of climate change. Impacts of increased drought on the photosynthetic capacity of the evergreen Quercus ilex were studied for two years in a mature forest submitted to long‐term throughfall exclusion. Gas exchange and chlorophyll fluorescence were measured on two successive leaf cohorts in a control and a dry plot. Exclusion significantly reduced leaf water potential in the dry treatment. In both treatments, light‐saturated net assimilation rate (Amax), stomatal conductance (gs), maximum carboxylation rate (Vcmax), maximum rate of electron transport (Jmax), mesophyll conductance to CO2 (gm) and nitrogen investment in photosynthesis decreased markedly with soil water limitation during summer. The relationships between leaf photosynthetic parameters and leaf water potential remained identical in the two treatments. Leaf and canopy acclimation to progressive, long‐term drought occurred through changes in leaf area index, leaf mass per area and leaf chemical composition, but not through modifications of physiological parameters.  相似文献   

16.
Photosynthetic rate and quatum efficiency of grapevine (Vitis vinifera L. cv. Sauvignon blanc) leaves were measured under the field with ample soil water supply, and in phytotron with ample supply of water and mineral nutrients, constant air humidity and CO2 concentration, and optimum air temperature, respectively. Under field conditions CO2 assimilation quantum efficiency of leaves reached its maximum in the morning, which was followed by continuous decrease and midday depression. The leaves intercepting more light energy in the morning showed a higher quantum efficiency. Those leaves subjected continuously to strong irradiance exhibited a more obvious and longer midday depression. Reduction of leaf light interception around midday could reduce midday depression. Shaded leaves had a higher quantum efficiency than leaves under direct sunlight. The diurnal changes in photosynthetic rate and quantum efficiency of leaves were shown to be closely related to the variations in mesophyll resistance to CO2. In phytotron experiments the photosynthetic quantum efficiency of leaves was reduced after a certain period of illumination not only at 1200 μmol · m-2 · s-1 PFD, higher than the saturating light of vine leaves (≈1000 μmol · m-2 · s-1), which was caused by "photoinhibition”, but also at 800 and 200μmol · m-2 · s-1, which was similar to "photoinhibition”. But photosynthetic quantum efficiency of leaves exposed continuously to a very weak PFD (100 μmol · m -2 · s-1) remained contant. The diurnal changes in mesophyll resistance to CO2 of vine leaves could be partly related to photoinhibition. It is considered that, under field conditions without soil water limitation, midday depression of vine leaf photosynthesis could be a result of an increase of the mesophyll resistance induced by multiple effects of strong light, high temperature and low humidity. A higher light interception by canopy plane in the morning may be advantageous to exploit higher photosynthetic potentiality of leaves, but a lower light interception in the middle of day may reduce midday depression. The north-south orientation plane can provide optimum light regime and improve photosynthetic environment in vineyards.  相似文献   

17.
Despite the observed impact of water stress on photosynthesis, some of the most used models of CO2 assimilation in C3 and C4 functional types do not directly account for it. We discuss an extension of these models, which explicitly includes the metabolic and diffusive limitations due to water stress on photosynthesis. Functional relationships describing the photosynthetic processes and CO2 diffusion inside leaves are modified to account for leaf water status on the basis of experimental results available in the literature. Extensive comparison with data shows that the model is suitable to describe the reduction in CO2 assimilation rate with decreasing leaf water potentials in various species. A simultaneous analysis of photosynthesis, transpiration and soil moisture dynamics is then carried out to explore the actual impact of drought on different photosynthesis processes and on the overall plant activity. The model well reproduces measured CO2 assimilation rate as a function of soil moisture and could be useful to formulate hypotheses for detailed experiments as well as to simulate in detail transpiration and photosynthesis dynamics under water stress.  相似文献   

18.
Summary A simulation model for radiation absorption and photosynthesis was used to test the hypothesis that observed nonuniform distributions of nitrogen concentrations in young Eucalyptus grandis trees result in greater amounts of daily assimilation than in hypothetical trees with uniform N distributions. Simulations were performed for trees aged 6, 9, 12 and 16 months which had been grown in plantations under a factorial combination of two levels of fertilization and irrigation. Observed leaf N distribution patterns yielded daily assimilation rates which were only marginally greater (<5%) than for hypothetical trees with uniform distributions. Patterns of assimilation distribution in individual tree crowns closely resembled those for absorbed radiation, rather than for N. These conclusions were unaffected by three choices of alternative leaf area density distributions. The simulation model was also used to calculate hourly and daily rates of canopy assimilation to investigate the relative importance of radiation absorption and total canopy nitrogen on assimilation. Simulated hourly rates of carbon assimilation were often lightsaturated, whereas daily carbon gain was directly proportional to radiation absorbed by the tree crown and to total mass of N in the leaves. Leaf nitrogen concentrations determined photosynthetic capacity, whereas total leaf area determined the amount of radiation absorbed and thus the degree to which capacity was realized. Observed total leaf area and total crown N were closely correlated. The model predicted that nitrogen use efficiences (NUE, mol CO2 mol–1 N) were 60% higher for unfertilized than for fertilized trees at low levels of absorbed photosynthetically active radiation (PAR). Nitrogen use efficiency was dependent on fertilizer treatment and on the amount of absorbed PAR; NUE declined with increasing absorbed PAR, but decreased more rapidly for unfertilized than for fertilized trees. Annual primary productivity was linearly related to both radiation absorbed and to mass of N in the canopy.  相似文献   

19.
Summary Relationships between leaf nitrogen content and within canopy light exposure were studied in mature nectarine peach trees (Prunus persica cv. Fantasia) that had received 0, 112, 196, 280 or 364 kg of fertilizer nitrogen per hectare per year for the previous 3 years. The relationships between light saturated leaf CO2 assimilation rates and leaf nitrogen concentration were also determined on trees in the highest and lowest nitrogen fertilization treatments. The slope of the linear relationship between leaf N content per unit leaf area and light exposure was similar for all nitrogen treatments but the y-intercept of the relationship increased with increasing N status. The slope of the relationship between leaf N content per unit leaf area and light saturated CO2 assimilation rates was greater for the high N trees than the low N trees, but maximum measured leaf CO2 assimilation rates were similar for both the high and low N treatments. A diagrammatic model of the partitioning of leaf photosynthetic capacity with respect to leaf light exposure for high and low nitrogen trees suggests that the major influence of increased N availability is an increase in the photosynthetic capacity of partially shaded leaves but not of the maximum capacity of highly exposed leaves.  相似文献   

20.
Mungbean is a relatively drought tolerant leguminous crop with a short life cycle. Using leaf water loss (LWL) as a screen for drought tolerance, two mungbean genotypes exhibiting more than two–fold variation in leaf water loss were explored for the genetic variation in their physiological and molecular responses to drought. Efficient stomatal regulation together with better photosynthetic capacity constituted an important trait combination for drought adaptation in water saving low LWL genotype. The stomatal closure under drought was accompanied with a concomitant down-regulation of farnesyl transferase gene. However, cooler canopy temperature, a well branched root system coupled with a relatively higher proline accumulation in water spending high LWL genotype constituted another set of adaptive traits operating when exposed to deficit soil moisture conditions. We report drought induced down-regulation of proline dehydrogenase and the presence of 118 base pair intron in this gene. The high seed yield of low LWL genotype despite a hotter canopy might be attributed to higher net assimilation and quantum yield recorded under drought in this genotype. Thus, these interlinked features contribute to adaptive mechanisms of mungbeans which is widely grown in harsh environments exposed to drought and high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号