首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apparent transition state movement upon mutation or changes in solvent conditions is frequently observed in protein folding and is often interpreted in terms of Hammond behavior. This led to the conclusion that barrier regions in protein folding are broad maxima on the free energy landscape. Here, we use the concept of self-interaction and cross-interaction parameters to test experimental data of 21 well-characterized proteins for Hammond behavior. This allows us to characterize the origin of transition state movements along different reaction coordinates. Only one of the 21 proteins shows a small but coherent transition state movement in agreement with the Hammond postulate. In most proteins the structure of the transition state is insensitive to changes in protein stability. The apparent change in the position of the transition state upon mutation, which is frequently observed in phi-value analysis, is in most cases due to ground-state effects caused by structural changes in the unfolded state. This argues for significant residual structure in unfolded polypeptide chains of many proteins. Disruption of these residual interactions by mutation often leads to decreased folding rates, which implies that these interactions are still present in the transition state. The failure to detect Hammond behavior shows that the free energy barriers encountered by a folding polypeptide chain are generally rather narrow and robust maxima for all experimentally explorable reaction coordinates.  相似文献   

2.
The characterization of the free energy barriers has been a major goal in studies on the mechanism of protein folding. Testing the effect of mutations or denaturants on protein folding reactions revealed that transition state movement is rare, suggesting that folding barriers are robust and narrow maxima on the free energy landscape. Here we demonstrate that the application of multiple perturbations allows the observation of small transition state movements that escape detection in single perturbation experiments. We used tendamistat as a model protein to test the broadness of the free energy barriers. Tendamistat folds over two consecutive transition states and through a high-energy intermediate. Measuring the combined effect of temperature and denaturant on the position of the transition state in the wild-type protein and in several mutants revealed that the early transition state shows significant transition state movement. Its accessible surface area state becomes more native-like with destabilization of the native state by temperature. To the same extent, the entropy of the early transition state becomes more native-like with increasing denaturant concentration, in accordance with Hammond behavior. The position of the late transition state, in contrast, is much less sensitive to the applied perturbations. These results suggest that the barriers in protein folding become increasingly narrow as the folding polypeptide chain approaches the native state.  相似文献   

3.
Mechanisms of protein folding   总被引:1,自引:0,他引:1  
Understanding the mechanism by which a polypeptide chain folds into its native structure is a central problem of modern biophysics. The collaborative efforts of experimental and theoretical studies recently raised the tantalizing possibility to define a unifying mechanism for protein folding. In this review we summarize some of these intriguing advances and analyze them together with a discussion on the new findings concerning the so-called downhill folding.  相似文献   

4.
Structural features of protein folding nuclei   总被引:1,自引:0,他引:1  
A crucial event of protein folding is the formation of a folding nucleus. We demonstrate the presence of a considerable coincidence between the location of folding nuclei and the location of so-called "root structural motifs", which have unique overall folds and handedness. In the case of proteins with a single root structural motif, the involvement in the formation of a folding nucleus is in average significantly higher for amino acids residues that are in root structural motifs, compared to residues in other parts of the protein. The tests carried out revealed that the observed difference is statistically reliable. Thus, a structural feature that corresponds to the protein folding nucleus is now found.  相似文献   

5.
Molten globule intermediates and protein folding   总被引:7,自引:0,他引:7  
  相似文献   

6.
Simple theoretical concepts and models have been helpful to understand the folding rates and routes of single-domain proteins. As reviewed in this article, a physical principle that appears to underly these models is loop closure.  相似文献   

7.
Theoretical and in vitro experiments suggest that protein folding cores form early in the process of folding, and that proteins may have evolved to optimize both folding speed and native-state stability. In our previous work (Chen et al., Structure, 14 (2006) 1401), we developed a set of empirical potential functions and used them to analyze interaction energies among secondary-structure elements in two β-sandwich proteins. Our work on this group of proteins demonstrated that the predicted folding core also harbors residues that form native-like interactions early in the folding reaction. In the current work, we have tested our empirical potential functions on structurally-different proteins for which the folding cores have been revealed by protein hydrogen-deuterium exchange experiments. Using a set of 29 unrelated proteins, which have been extensively studied in the literature, we demonstrate that the average prediction result from our method is significantly better than predictions based on other computational methods. Our study is an important step towards the ultimate goal of understanding the correlation between folding cores and native structures.  相似文献   

8.
In order to understand the mechanism of protein folding and to assist the rational de-novo design of fast-folding, non-aggregating and stable artificial enzymes it is very helpful to be able to simulate protein folding reactions and to predict the structures of proteins and other biomacromolecules. Here, we use a method of computer programming called "evolutionary computer programming" in which a program evolves depending on the evolutionary pressure exerted on the program. In the case of the presented application of this method on a computer program for folding simulations, the evolutionary pressure exerted was towards faster finding deep minima in the energy landscape of protein folding. Already after 20 evolution steps, the evolved program was able to find deep minima in the energy landscape more than 10 times faster than the original program prior to the evolution process.  相似文献   

9.
Current theoretical views of the folding process of small proteins (< approximately 100 amino acids) postulate that the landscape of potential mean force (PMF) for the formation of the native state has a funnel shape and that the free energy barrier to folding arises from the chain configurational entropy only. However, recent theoretical studies on the formation of hydrophobic clusters with explicit water suggest that a barrier should exist on the PMF of folding, consistent with the fact that protein folding generally involves a large positive activation enthalpy at room temperature. In addition, high-resolution structural studies of the hidden partially unfolded intermediates have revealed the existence of non-native interactions, suggesting that the correction of the non-native interactions during folding should also lead to barriers on PMF. To explore the effect of a PMF barrier on the folding behavior of proteins, we modified Zwanzig's model for protein folding with an uphill landscape of PMF for the formation of transition states. We found that the modified model for short peptide segments can satisfy the thermodynamic and kinetic criteria for an apparently two-state folding. Since the Levinthal paradox can be solved by a stepwise folding of short peptide segments, a landscape of PMF with a locally uphill search for the transition state and cooperative stabilization of folding intermediates/native state is able to explain the available experimental results for small proteins. We speculate that the existence of cooperative hidden folding intermediates in small proteins could be the consequence of the highly specific structures of the native state, which are selected by evolution to perform specific functions and fold in a biologically meaningful time scale.  相似文献   

10.
The conversion of the cellular form of the prion protein (PrPC) to an altered disease state, generally denoted as scrapie isoform (PrPSc), appears to be a crucial molecular event in prion diseases. The details of this conformational transition are not fully understood, but it is perceived that they are associated with misfolding of PrP or its incapacity to maintain the native fold during its cell cycle. Here we present a tryptophan mutant of PrP (F198W), which has enhanced fluorescence sensitivity to unfolding/refolding transitions. Equilibrium folding was studied by circular dichroism and fluorescence. Pressure-jump experiments were successfully applied to reveal rapid submillisecond folding events of PrP at temperatures not accessed before. D. C. Jenkins and D. S. Pearson contributed equally.  相似文献   

11.
The self-assembly of RNA structure depends on the interactions of counterions with the RNA and with each other. Comparison of various polyamines showed that the tertiary structure of the Tetrahymena ribozyme is more stable when the counterions are small and highly charged. By monitoring the folding kinetics of the ribozyme as a function of polyamine concentration, we now find that the charge density of the counterions determines the positions of the folding transition states. The transition state ensemble (TSE) between U and N moves away from the native state as the counterion valence and charge density increase, as predicted by the Hammond postulate. The TSE is broader and less structured when the RNA is refolded in polyamines rather than Mg2+. That the charge density of the counterions determines the plasticity of the TSE demonstrates the importance of interactions among condensed counterions for the self-assembly of RNA structures. We propose that the major barrier to RNA folding is dominated by entropy changes when counterion charge density is low and enthalpy differences when it is high.  相似文献   

12.
We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.  相似文献   

13.
Proteins fold in a time range of microseconds to minutes despite the large amount of possible conformers. Molecular dynamics simulations of a three-stranded antiparallel beta-sheet peptide (for a total of 12.6 microsec and 72 folding events) show that at the melting temperature the unfolded state ensemble contains many more conformers than those sampled during a folding event.  相似文献   

14.
The role of local interactions in protein folding has recently been the subject of some controversy. Here we investigate an extension of Zwanzig's simple and general model of folding in which local and nonlocal interactions are represented by functions of single and multiple conformational degrees of freedom, respectively. The kinetics and thermodynamics of folding are studied for a series of energy functions in which the energy of the native structure is fixed, but the relative contributions of local and nonlocal interactions to this energy are varied over a broad range. For funnel shaped energy landscapes, we find that 1) the rate of folding increases, but the stability of the folded state decreases, as the contribution of local interactions to the energy of the native structure increases, and 2) the amount of native structure in the unfolded state and the transition state vary considerably with the local interaction strength. Simple exponential kinetics and a well-defined free energy barrier separating folded and unfolded states are observed when nonlocal interactions make an appreciable contribution to the energy of the native structure; in such cases a transition state theory type approximation yields reasonably accurate estimates of the folding rate. Bumps in the folding funnel near the native state, which could result from desolvation effects, side chain freezing, or the breaking of nonnative contacts, significantly alter the dependence of the folding rate on the local interaction strength: the rate of folding decreases when the local interaction strength is increased beyond a certain point. A survey of the distribution of strong contacts in the protein structure database suggests that evolutionary optimization has involved both kinetics and thermodynamics: strong contacts are enriched at both very short and very long sequence separations. Proteins 29:282–291, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
简要综述了近年来蛋白质折叠机理的理论研究。首先回顾了蛋白质折叠理论的发展历程,然后对折叠中间体的研究现状作了较详细的介绍。同时,对折叠机理理论研究中的几种理论模型和模拟算法作了细致评述,分析了其现状和存在的问题。最后,总结和讨论了折叠机理理论研究的现存问题及研究热点,并展望了该领域研究的发展趋势。  相似文献   

16.
The cold shock protein Bc-Csp folds very rapidly in a reaction that is well described by a kinetic two-state mechanism without intermediates. We measured the shortening of six intra-protein distances during folding by F?rster resonance energy transfer (FRET) in combination with stopped-flow experiments. Single tryptophan residues were engineered into the protein as the donors, and single 5-(((acetylamino)ethyl)amino)naphthalene-1-sulfonate (AEDANS) residues were placed as the acceptors at solvent-exposed sites of Bc-Csp. Their R0 value of about 22 A was well suited for following distance changes during the folding of this protein with a high sensitivity. The mutagenesis and the labeling did not alter the refolding kinetics. The changes in energy transfer during folding were monitored by both donor and acceptor emission and reciprocal effects were found. In two cases the donor-acceptor distances were similar in the unfolded and the folded state and, as a consequence, the kinetic changes in energy transfer upon folding were very small. For four donor/acceptor pairs we found that > or =50% of the increase in energy transfer upon folding occurred prior to the rate-limiting step of folding. This reveals that about half of the shortening of the intra-molecular distances upon folding has occurred already before the rate-limiting step and suggests that the fast two-state folding reaction of Bc-Csp is preceded by a very rapid collapse.  相似文献   

17.
18.
phi(f)-value analysis is one of the most common methods to characterize the structure of protein folding transition states. It compares the effects of mutations on the folding kinetics with the respective effects on equilibrium stability. The interpretation of the results usually focuses on a few unusual phi(f)-values, which are either particularly high or which are larger than 1 or smaller than 0. These mutations are believed to affect the most important regions for the folding process. A major uncertainty in experimental phi(f)-values is introduced by the commonly used analysis of only a single mutant at various positions in a protein (two-point analysis). To test the reliability of two-point phi(f)-values we used reference data from three positions in two different proteins at which multiple mutations have been introduced. The results show that two-point phi(f)-values are highly inaccurate if the difference in stability between two variants is less than 7 kJ/mol, corresponding to a 20-fold difference in equilibrium constant. Comparison with reported phi(f)-values for 11 proteins shows that most unusual phi(f)-values are observed in mutants which show changes in protein stability that are too small to allow a reliable analysis. The results argue against specific nucleation sites in protein folding and give a picture of transition states as distorted native states for the major part of a protein or for large substructures.  相似文献   

19.
Over the past three decades the protein folding field has undergone monumental changes. Originally a purely academic question, how a protein folds has now become vital in understanding diseases and our abilities to rationally manipulate cellular life by engineering protein folding pathways. We review and contrast past and recent developments in the protein folding field. Specifically, we discuss the progress in our understanding of protein folding thermodynamics and kinetics, the properties of evasive intermediates, and unfolded states. We also discuss how some abnormalities in protein folding lead to protein aggregation and human diseases.  相似文献   

20.
Multiple phases have been observed during the folding and unfolding of intestinal fatty acid binding protein (WT-IFABP) by stopped-flow fluorescence. Site-directed mutagenesis has been used to examine the role of each of the two tryptophans of this protein in these processes. The unfolding and refolding kinetics of the mutant protein containing only tryptophan 82 (W6Y-IFABP) showed that the tryptophan at this location was critical to the fluorescence signal changes observed throughout the unfolding reaction and early in the refolding reaction. However, the kinetic patterns of the mutant protein containing only tryptophan 6 (W82Y-IFABP) indicated that the tryptophan at this location participated in the fluorescence signal changes observed early in the unfolding reaction and late in the refolding reaction. Together, these data suggest that native-like structure was formed first in the vicinity of tryptophan 82, near the center of the hydrophobic core of this beta-sheet protein, prior to formation of native-like structure in the periphery of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号