首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The matrix attachment region (MAR) is a distinctive genomic DNA involved in a variety of nuclear processes through association with the nuclear matrix. Recent studies suggest that nuclear matrix is altered in the process of apoptosis and presented to the immune system, leading to the production of autoantibodies against its protein components. To see whether MARs are also recognized by autoantibodies, a collection of human sera containing antinuclear antibodies was screened for the presence of binding activities against cloned MARs. We found that MAR-binding activities are quite common in these sera. There was a positive correlation among the MAR-binding titers for three different MAR probes. As expected, the MAR-binding activity was copurified with serum IgG, and subclass analysis with affinity-purified IgG on MAR-Sepharose showed a predominance of IgG2 isotype. Several lines of evidence implied that the anti-MAR antibodies detected here is distinct from the ordinary anti-DNA antibodies that are reactive to bulk DNA.  相似文献   

2.
Wang T  Hou G  Wang Y  Xue L 《Journal of biochemistry》2010,148(6):651-658
Although interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) are implicated in various nuclear functions, the understanding of the regulatory mechanism of MARs is still poor. A few MAR-binding proteins (MARBP) have been isolated from some plants and animals, but not from the unicellular algae. Here, we identify a novel MAR-binding protein, namely DMBP-1, from the halotolerant alga Dunaliella salina. The cDNA of DMBP-1 is 2322-bp long and contains a 1626 bp of an open reading frame encoding a polypeptide of 542 amino acids (59 kDa). The DMBP-1 expressed in Escherichia coli specifically binds A/T-rich MAR DNA. The DMBP-1 fused to green fluorescent protein appears only inside the nuclei of Chinese hamster ovarian cells transfected with the pEGFP-MBP, indicating that the protein is located in the nuclei. The findings mentioned above may contribute to better understanding of the nuclear matrix-MAR interactions.  相似文献   

3.
4.
5.
6.
The recent discovery of DNA sequences responsible for the specific attachment of chromosomal DNA to the nuclear skeleton (MARs/SARs) was an important step towards our understanding of the functional and structural organization of eukaryotic chromatin [Mirkovitch et al.: Cell 44:273-282, 1984; Cockerill and Garrard: Cell 44:273-282, 1986]. A most important question, however, remains the nature of the matrix proteins involved in the specific binding of the MARs. It has been shown that topoisomerase II and histone H1 were capable of a specific interaction with SARs by the formation of precipitable complexes [Adachi et al.: EMBO J8:3997-4006, 1989; Izaurralde et al.: J Mol Biol 210:573-585, 1989]. Here, applying a different approach, we were able to "visualize" some of the skeletal proteins recognizing and specifically binding MAR-sequences. It is shown that the major matrix proteins are practically the same in both salt- and LIS-extracted matrices. However, the relative MAR-binding activity of the individual protein components may be different, depending on the method of matrix preparation. The immunological approach applied here allowed us to identify some of the individual MAR-binding matrix proteins. Histone H1 and nuclear actin are shown to be not only important components of the matrix, but to be involved in a highly efficient interaction with MAR-sequences as well. Evidence is presented that proteins recognized by the anti-HMG antibodies also participate in MAR-interactions.  相似文献   

7.
To locate elements regulating the human CD8 gene complex, we mapped nuclear matrix attachment regions (MARs) and DNase I hypersensitive (HS) sites over a 100-kb region that included the CD8B gene, the intergenic region, and the CD8A gene. MARs facilitate long-range chromatin remodeling required for enhancer activity and have been found closely linked to several lymphoid enhancers. Within the human CD8 gene complex, we identified six DNase HS clusters, four strong MARs, and several weaker MARs. Three of the strong MARs were closely linked to two tissue-specific DNase HS clusters (III and IV) at the 3' end of the CD8B gene. To further establish the importance of this region, we obtained 19 kb of sequence and screened for potential binding sites for the MAR-binding protein, SATB1, and for GATA-3, both of which are critical for T cell development. By gel shift analysis we identified two strong SATB1 binding sites, located 4.5 kb apart, in strong MARs. We also detected strong GATA-3 binding to an oligonucleotide containing two GATA-3 motifs located at an HS site in cluster IV. This clustering of DNase HS sites and MARs capable of binding SATB1 and GATA-3 at the 3' end of the CD8B gene suggests that this region is an epigenetic regulator of CD8 expression.  相似文献   

8.
9.
10.
Tumor progression is characterized by definite changes in the protein composition of the nuclear matrix (NM). The interactions of chromatin with the NM occur via specific DNA sequences called MARs (matrix attachment regions). In the present study, we applied a proteomic approach along with a Southwestern assay to detect both differentially expressed and MAR-binding NM proteins, in persistent hepatocyte nodules (PHN) in respect with normal hepatocytes (NH). In PHN, the NM undergoes changes both in morphology and in protein composition. We detected over 500 protein spots in each two dimensional map and 44 spots were identified. Twenty-three proteins were differentially expressed; among these, 15 spots were under-expressed and 8 spots were over-expressed in PHN compared to NH. These changes were synchronous with several modifications in both NM morphology and the ability of NM proteins to bind nuclear RNA and/or DNA containing MARs sequences. In PHN, we observed a general decrease in the expression of the basic proteins that bound nuclear RNA and the over-expression of two species of Mw 135 kDa and 81 kDa and pI 6.7-7.0 and 6.2-7.4, respectively, which exclusively bind to MARs. These results suggest that the deregulated expression of these species might be related to large-scale chromatin reorganization observed in the process of carcinogenesis by modulating the interaction between MARs and the scaffold structure.  相似文献   

11.
Matrix attachment regions (MARs) can be operationally defined as DNA fragments that bind to the nuclear matrix. We have created a library of randomly obtained MARs from tobacco (Nicotiana tobacum) by cloning DNA fragments that co-isolate with nuclear matrixes prepared by a method involving lithium diiodosalicylate. The interactions of several of the cloned MARs with nuclear matrixes were tested by an in vitro binding assay in which genomic DNA was used as competitor. Based on this assay, the MARs were classified as strong, medium, and weak binders. Examples of each of the binding classes were further studied by in vitro binding using self- and cross-competition. Estimates of dissociation constants for several MARs ranged from 6 to 11 nM and correlated inversely with binding strength. The number of binding sites per matrix for several MARs ranged from 4 x 10(5) to 9 x 10(5) and correlated directly with binding strength. We conclude that binding strength, as we have measured it, is a function of both numbers of binding sites and affinity for the sites. The tobacco MARs were sequenced and analyzed for overall AT content, for distribution of AT-rich regions, and for the abundance of several MAR-related motifs. Previously identified MAR motifs correlate to various degrees with binding strength. Notably, the Drosophila topoisomerase II motif does not correlate with binding strength of the tobacco MARs. A newly identified motif, the "90%AT Box," correlates better with binding strength than any of the previously identified motifs we investigated.  相似文献   

12.
In tumor progression definite alterations in nuclear matrix (NM) protein composition as well as in chromatin structure occur. The NM interacts with chromatin via specialized DNA sequences called matrix attachment regions (MARs). In the present study, using a proteomic approach along with a two-dimensional Southwestern assay and confocal laser microscopy, we show that the differentiation of stabilized human prostate carcinoma cells is marked out by modifications both NM protein composition and bond between NM proteins and MARs. Well-differentiated androgen-responsive and slowly growing LNCaP cells are characterized by a less complex pattern and by a major number of proteins binding MAR sequences in comparison to 22Rv1 cells expressing androgen receptor but androgen-independent. Finally, in the poorly differentiated and strongly aggressive androgen-independent PC3 cells the complexity of NM pattern further increases and a minor number of proteins bind the MARs. Furthermore, in this cell line with respect to LNCaP cells, these changes are synchronous with modifications in both the nuclear distribution of the MAR sequences and in the average loop dimensions that significantly increase. Although the expression of many NM proteins changes during dedifferentiation, only a very limited group of MAR-binding proteins seem to play a key role in this process. Variations in the expression of poly (ADP-ribose) polymerase (PARP) and special AT-rich sequence-binding protein-1 (SATB1) along with an increase in the phosphorylation of lamin B represent changes that might trigger passage towards a more aggressive phenotype. These results suggest that elucidating the MAR-binding proteins that are involved in the differentiation of prostate cancer cells could be an important tool to improve our understanding of this carcinogenesis process, and they could also be novel targets for prostate cancer therapy.  相似文献   

13.
Interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) have been implicated in various nuclear functions. We have identified a novel protein from wheat, AT hook-containing MAR binding protein1 (AHM1), that binds preferentially to MARs. A multidomain protein, AHM1 has the special combination of a J domain-homologous region and a Zn finger-like motif (a J-Z array) and an AT hook. For MAR binding, the AT hook at the C terminus was essential, and an internal portion containing the Zn finger-like motif was additionally required in vivo. AHM1 was found in the nuclear matrix fraction and was localized in the nucleoplasm. AHM1 fused to green fluorescent protein had a speckled distribution pattern inside the nucleus. AHM1 is most likely a nuclear matrix component that functions between intranuclear framework and MARs. J-Z arrays can be found in a group of (hypothetical) proteins in plants, which may share some functions, presumably to recruit specific Hsp70 partners as co-chaperones.  相似文献   

14.
Scaffold or matrix-attachment regions (S/MARs) are thought to be involved in the organization of eukaryotic chromosomes and in the regulation of several DNA functions. Their characteristics are conserved between plants and humans, and a variety of biological activities have been associated with them. The identification of S/MARs within genomic sequences has proved to be unexpectedly difficult, as they do not appear to have consensus sequences or sequence motifs associated with them. We have shown that S/MARs do share a characteristic structural property, they have a markedly high predicted propensity to undergo strand separation when placed under negative superhelical tension. This result agrees with experimental observations, that S/MARs contain base-unpairing regions (BURs). Here, we perform a quantitative evaluation of the association between the ease of stress-induced DNA duplex destabilization (SIDD) and S/MAR binding activity. We first use synthetic oligomers to investigate how the arrangement of localized unpairing elements within a base-unpairing region affects S/MAR binding. The organizational properties found in this way are applied to the investigation of correlations between specific measures of stress-induced duplex destabilization and the binding properties of naturally occurring S/MARs. For this purpose, we analyze S/MAR and non-S/MAR elements that have been derived from the human genome or from the tobacco genome. We find that S/MARs exhibit long regions of extensive destabilization. Moreover, quantitative measures of the SIDD attributes of these fragments calculated under uniform conditions are found to correlate very highly (r2>0.8) with their experimentally measured S/MAR-binding strengths. These results suggest that duplex destabilization may be involved in the mechanisms by which S/MARs function. They suggest also that SIDD properties may be incorporated into an improved computational strategy to search genomic DNA sequences for sites having the necessary attributes to function as S/MARs, and even to estimate their relative binding strengths.  相似文献   

15.
16.
Protein:DNA interactions at chromosomal loop attachment sites   总被引:6,自引:0,他引:6  
We have recently identified an evolutionarily conserved class of sequences that organize chromosomal loops in the interphase nucleus, which we have termed "matrix association regions" (MARs). MARs are about 200 bp long, AT-rich, contain topoisomerase II consensus sequences and other AT-rich sequence motifs, often reside near cis-acting regulatory sequences, and their binding sites are abundant (greater than 10,000 per mammalian nucleus). Here we demonstrate that the interactions between the mouse kappa immunoglobulin gene MAR and topoisomerase II or the "nuclear matrix" occur between multiple and sometimes overlapping binding sites. Interestingly, the sites most susceptible to topoisomerase II cleavage are localized near the breakpoints of a previously described illegitimate recombination event. The presence of multiple binding sites within single MARs may allow DNA and RNA polymerase passage without disrupting primary loop organization.  相似文献   

17.
Nuclear matrix association regions of rat alpha 2-macroglobulin gene   总被引:1,自引:0,他引:1  
We have identified DNA fragments which bind specifically to the nuclear matrix in vitro, termed matrix association regions (MARs), in the first and fourth introns of rat alpha 2-macroglobulin gene. The MAR in the first intron is enriched with sequences closely related to the cleavage consensus of topoisomerase II, and contains the binding site of nuclear factor-alpha, a sequence-specific DNA binding protein reported previously.  相似文献   

18.
19.
20.
Nuclear DNA is organized into chromatin loop domains. At the base of these loops, matrix-associated regions (MARs) of the DNA interact with nuclear matrix proteins. MARs act as structural boundaries within chromatin, and MAR binding proteins may recruit multiprotein complexes that remodel chromatin. The potential tumor suppressor protein CTCF binds to vertebrate insulators and is required for insulator activity. We demonstrate that CTCF is associated with the nuclear matrix and can be cross-linked to DNA by cisplatin, an agent that preferentially cross-links nuclear matrix proteins to DNA in situ. These results suggest that CTCF anchors chromatin to the nuclear matrix, suggesting that there is a functional connection between insulators and the nuclear matrix. We also show that the chromatin-modifying enzymes HDAC1 and HDAC2, which are intrinsic nuclear matrix components and thought to function as corepressors of CTCF, are incapable of associating with CTCF. Hence, the insulator activity of CTCF apparently involves an HDAC-independent association with the nuclear matrix. We propose that CTCF may demarcate nuclear matrix-dependent points of transition in chromatin, thereby forming topologically independent chromatin loops that may support gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号