首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Galápagos penguin (Spheniscus mendiculus) is an endangered species endemic to the Galápagos Islands, Ecuador. In 2003 and 2004, 195 penguins from 13 colonies on the islands of Isabela and Fernandina in the Galápagos archipelago were examined. Genetic sexing of 157 penguins revealed 62 females and 95 males. Hematology consisted of packed cell volume (n = 134), white blood cell differentials (n = 83), and hemoparasite blood smear evaluation (n = 114). Microfilariae were detected in 22% (25/114) of the blood smears. Female penguins had significantly higher eosinophil counts than males. Serum chemistry on 83 penguins revealed no significant differences between males and females. Birds were seronegative to avian paramyxovirus type 1-3, avian influenza virus, infectious bursal disease virus, Marek's disease virus (herpes), reovirus, avian encephalomyelitis virus, and avian adenovirus type 1 and 2 (n = 75), as well as to West Nile virus (n = 87), and Venezuelan, western and eastern equine encephalitis viruses (n = 26). Seventy-five of 84 (89%) penguins had antibodies to Chlamydophila psittaci but chlamydial DNA was not detected via polymerase chain reaction in samples from 30 birds.  相似文献   

2.

Background

Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galápagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms.

Results

Mitochondrial DNA sequences were obtained for four species of Galápagos mockingbirds and three sympatric species of ectoparasites - two louse and one mite species. These data were complemented with nuclear EF1α sequences in selected samples of parasites and with information from microsatellite loci in the mockingbirds. Mitochondrial sequence data revealed differences in population genetic diversity between all taxa and varying degrees of topological congruence between host and parasite lineages. A very low level of genetic variability and lack of congruence was found in one of the louse parasites, which was excluded from subsequent joint analysis of mitochondrial data. The reconciled multi-species tree obtained from the analysis is congruent with both the nuclear data and the geological history of the islands.

Conclusions

The gene genealogies of Galápagos mockingbirds and two of their ectoparasites show strong phylogeographic correlations, with instances of incongruence mostly explained by ancestral genetic polymorphism. A third parasite genealogy shows low levels of genetic diversity and little evidence of co-phylogeny with their hosts. These differences can mostly be explained by variation in life-history characteristics, primarily host specificity and dispersal capabilities. We show that pooling genetic data from organisms living in close ecological association reveals a more accurate phylogeographic history for these taxa. Our results have implications for the conservation and taxonomy of Galápagos mockingbirds and their parasites.  相似文献   

3.

Background

Evolution is everywhere in Galápagos, especially regarding the role the islands have played in the history of evolutionary thought. In turn, the Galápagos National Park guides are in a unique position as informal science educators, as they are the primary points-of-contact for the islands’ ~ 200,000 tourists per year. Our goal was to assess the guides’ knowledge and acceptance of the theory of evolution, in addition to learning more about their perceptions of the connection between the islands and evolution.

Methods

We surveyed 63 guides in three towns on three of the archipelago’s populated islands. Surveys included items targeting the guides knowledge of evolution (via the Knowledge of Evolution Exam, or the KEE) and acceptance of the theory of evolution (via the Measure of Acceptance of the Theory of Evolution, or the MATE). Additional, novel items gauged the guides’ perceptions of the islands, insofar as Galápagos is connected to evolution and the history of evolutionary thought.

Results

Although acceptance of evolution was high, knowledge was relatively low. However, the guides are proud of the islands’ association with the history of evolutionary thought, and enjoy talking about evolution while giving tours. On open-ended responses, guides claimed to especially enjoy talking with tourists about geology and island culture, and a few voiced concerns about the conflict between evolution and religion. Finally, the overwhelming majority of the guides agreed or strongly agreed with the statement, “I would like to learn more about Galápagos and the history of evolutionary thought.”

Conclusions

Galápagos guides display a disconnect between what is felt about evolution, and what is known about how evolution actually works. We can probably trace their fondness for, and acceptance of, evolution to the clear connection between evolution, tourism, and the guides’ livelihoods. We can trace their lack of knowledge to their schooling, as prior work detected similarly low knowledge of evolution in the islands’ schoolteachers. However, the guides are a receptive audience for professional development pertaining to our contemporary understanding of the mechanics of biological evolution. Improving guides’ understanding of biological evolution could, in turn, inform the evolutionary understanding of thousands of tourists each year.
  相似文献   

4.
In the traditional biogeographic model, the Galápagos Islands appeared a few million years ago in a sea where no other islands existed and were colonized from areas outside the region. However, recent work has shown that the Galápagos hotspot is 139 million years old (Early Cretaceous), and so groups are likely to have survived at the hotspot by dispersal of populations onto new islands from older ones. This process of metapopulation dynamics means that species can persist indefinitely in an oceanic region, as long as new islands are being produced. Metapopulations can also undergo vicariance into two metapopulations, for example at active island arcs that are rifted by transform faults. We reviewed the geographic relationships of Galápagos groups and found 10 biogeographic patterns that are shared by at least two groups. Each of the patterns coincides spatially with a major tectonic structure; these structures include: the East Pacific Rise; west Pacific and American subduction zones; large igneous plateaus in the Pacific; Alisitos terrane (Baja California), Guerrero terrane (western Mexico); rifting of North and South America; formation of the Caribbean Plateau by the Galápagos hotspot, and its eastward movement; accretion of Galápagos hotspot tracks; Andean uplift; and displacement on the Romeral fault system. All these geological features were active in the Cretaceous, suggesting that geological change at that time caused vicariance in widespread ancestors. The present distributions are explicable if ancestors survived as metapopulations occupying both the Galápagos hotspot and other regions before differentiating, more or less in situ.  相似文献   

5.
Galápagos hawks (Buteo galapagoensis) are one of the most inbred bird species in the world, living in small, isolated island populations. We used mitochondrial sequence and nuclear minisatellite data to describe relationships among Galápagos hawk populations and their colonization history. We sampled 10 populations (encompassing the entire current species range of nine islands and one extirpated population), as well as the Galápagos hawk's closest mainland relative, the Swainson's hawk (B. swainsoni). There was little sequence divergence between Galápagos and Swainson's hawks (only 0.42% over almost 3kb of data), indicating that the hawks colonized Galápagos very recently, likely less than 300,000 years ago, making them the most recent arrivals of the studied taxa. There were only seven, closely related Galápagos hawk haplotypes, with most populations being monomorphic. The mitochondrial and minisatellite data together indicated a general pattern of rapid population expansion followed by genetic isolation of hawk breeding populations. The recent arrival, genetic isolation, and phenotypic differentiation among populations suggest that the Galápagos hawk, a rather new species itself, is in the earliest stages of further divergence.  相似文献   

6.
Nuclear sequence data were collected from endemic Galápagos species and an introduced close relative, and contrasted with mitochondrial DNA sequences, continuing investigation into the colonization history and modes of diversification in the weevil genus Galapaganus. The current combined phylogeny together with previously published penalized likelihood age estimates builds a complex picture of the archipelago''s colonization history. The present reconstruction relies on submerged platforms to explain the early divergence of the young southern Isabela endemics or the Española or San Cristobal populations. Diversity is later built through inter-island divergence starting on older islands and continuing on two simultaneous tracks towards younger islands. The amount of diversity generated through intra-island processes is skewed towards older islands, suggesting that island age significantly influences diversity. Phylogenetic concordance between nuclear and mitochondrial datasets and well-supported monophyletic species in mitochondrial derived topologies appear to reject the possibility of inter-species hybridization. These clear species boundaries might be related to the tight host associations of adult weevils in discrete ecological zones. If shared hosts facilitate hybridization, then host- or habitat-promoted divergences could prevent it, even in the case of species that share islands, since the altitudinal partitioning of habitats minimizes range overlap.  相似文献   

7.
One of the classic examples of adaptive radiation under natural selection is the evolution of 15 closely related species of Darwin''s finches (Passeriformes), whose primary diversity lies in the size and shape of their beaks. Since Charles Darwin and other members of the Beagle expedition collected these birds on the Galápagos Islands in 1835 and introduced them to science, they have been the subjects of intense research. Many biology textbooks use Darwin''s finches to illustrate a variety of topics of evolutionary theory, such as speciation, natural selection and niche partitioning. Today, as this Theme Issue illustrates, Darwin''s finches continue to be a very valuable source of biological discovery. Certain advantages of studying this group allow further breakthroughs in our understanding of changes in recent island biodiversity, mechanisms of speciation and hybridization, evolution of cognitive behaviours, principles of beak/jaw biomechanics as well as the underlying developmental genetic mechanisms in generating morphological diversity. Our objective was to bring together some of the key workers in the field of ecology and evolutionary biology who study Darwin''s finches or whose studies were inspired by research on Darwin''s finches. Insights provided by papers collected in this Theme Issue will be of interest to a wide audience.  相似文献   

8.
We studied steroid hormone patterns and aggression during breeding in female Galápagos marine iguanas (Amblyrhynchus cristatus). Females display vigorously towards courting males after copulating (female-male aggression), as well as fight for and defend nest sites against other females (female-female aggression). To understand the neuroendocrine basis of this aggressive behavior, we examined changes in testosterone (T), estradiol (E2), corticosterone (CORT), and progesterone (P4) during the mating and nesting periods, and then measured levels in nesting females captured during aggressive interactions. Testosterone reached maximal levels during the mating stage when female-male aggression was most common, and increased slightly, but significantly, during the nesting stage when female-female aggression was most common. However, fighting females had significantly lower T, but higher E2 and P4, than non-fighting females. It remains unclear whether these changes in hormone levels during aggressive interactions are a cause or a consequence of a change in behavior. Our results support the “challenge hypothesis”, but suggest that E2 and/or P4 may increase in response to aggressive challenges in females just as T does in males. Females may be rapidly aromatizing T to elevate circulating levels of E2 during aggressive interactions. This hypothesis could explain why non-fighting females had slightly elevated baseline T, but extremely low E2, during stages when aggressive interactions were most common. Although P4 increased rapidly during aggressive encounters, it is unclear whether it acts directly to affect behavior, or indirectly via conversion to E2. The rapid production and conversion of E2 and P4 may be an important mechanism underlying female aggression in vertebrates.  相似文献   

9.
Endocrine-immune interactions are variable across species and contexts making it difficult to discern consistent patterns. There is a paucity of data in non-model systems making these relationships even more nebulous, particularly in reptiles. In the present study, we have completed a more comprehensive test of the relationship among steroid hormones and ecologically relevant immune measures. We tested the relationship between baseline and stress-induced levels of sex and adrenal steroid hormones and standard ecoimmunological metrics in both female and male Galápagos marine iguanas (Amblyrhynchus cristatus). We found significant associations between adrenal activity and immunity, whereby females that mounted greater corticosterone responses to stress had lower basal and stress-induced immunity (i.e., bactericidal ability). Males showed the opposite relationship, suggesting sex-specific immunomodulatory actions of corticosterone. In both sexes, we observed a stress-induced increase in corticosterone, and in females a stress-induced increase in bactericidal ability. Consistent with other taxa, we also found that baseline corticosterone and testosterone in males was inversely related to baseline bactericidal ability. However, in females, we found a positive relationship between both testosterone and progesterone and bactericidal ability. Multivariate analysis did not discern any further endocrine-immune relationships, suggesting that interactions between adrenal, sex steroid hormones, and the immune system may not be direct and instead may be responding to other common stimuli, (i.e., reproductive status, energy). Taken together, these data illustrate significant endocrine-immune interactions that are highly dependent on sex and the stress state of the animal.  相似文献   

10.
11.
The retention time of food in the digestive tract of animals has important implications for digestive physiology. Retention time impacts digestive efficiency and among herbivores affects plant–animal interactions including herbivory and seed dispersal. Poorly studied yet iconic Galápagos tortoises are large-bodied generalist herbivores and ecosystem engineers which migrate seasonally. Potentially variable digesta retention times due to strong seasonal and altitudinal temperature gradients may influence tortoise seed dispersal abilities and rates of herbivory. We fed captive adult tortoises living in semi-natural conditions on Galápagos with inert particles and seeds from locally available fruits to determine whether seed size and ambient temperature influenced retention time. Median retention time varied from 6 to 28 days, with a mode of 12 days. Seed size had no effect on any of our measures of retention time, but ambient temperature was inversely correlated with retention times. Long retention time facilitates long distance seed dispersal by Galápagos tortoises, which may improve effectiveness. The effect of temperature, which may double from hot lowlands to cold highlands through the seasonal cycle, on tortoise digesta retention time will strongly influence seed dispersal efficiency and may influence patterns of food selection and migration in this species.  相似文献   

12.

Background

Despite the importance of the Galápagos Islands for the development of central concepts in ecology and evolution, the understanding of many ecological processes in this archipelago is still very basic. One such process is pollination, which provides an important service to both plants and their pollinators. The rather modest level of knowledge on this subject has so far limited our predictive power on the consequences of the increasing threat of introduced plants and pollinators to this unique archipelago.

Scope

As a first step toward building a unified view of the state of pollination in the Galápagos, a thorough literature search was conducted on the breeding systems of the archipelago''s flora and compiled all documented flower–visitor interactions. Based on 38 studies from the last 100 years, we retrieved 329 unique interactions between 123 flowering plant species (50 endemics, 39 non-endemic natives, 26 introduced and eight of unknown origin) from 41 families and 120 animal species from 13 orders. We discuss the emergent patterns and identify promising research avenues in the field.

Conclusions

Although breeding systems are known for <20 % of the flora, most species in our database were self-compatible. Moreover, the incidence of autogamy among endemics, non-endemic natives and alien species did not differ significantly, being high in all groups, which suggests that a poor pollinator fauna does not represent a constraint to the integration of new plant species into the native communities. Most interactions detected (approx. 90 %) come from a single island (most of them from Santa Cruz). Hymenopterans (mainly the endemic carpenter bee Xylocopa darwinii and ants), followed by lepidopterans, were the most important flower visitors. Dipterans were much more important flower visitors in the humid zone than in the dry zone. Bird and lizard pollination has been occasionally reported in the dry zone. Strong biases were detected in the sampling effort dedicated to different islands, time of day, focal plants and functional groups of visitors. Thus, the existing patterns need to be confronted with new and less biased data. The implementation of a community-level approach could greatly increase our understanding of pollination on the islands and our ability to predict the consequences of plant invasions for the natural ecosystems of the Galápagos.  相似文献   

13.
Abstract.— We examined the phylogeography and history of giant Galàpagos tortoise populations based on mito-chondrial DNA sequence data from 161 individuals from 21 sampling sites representing the 11 currently recognized extant taxa. Molecular clock and geological considerations indicate a founding of the monophyletic Galàpagos lineage around 2–3 million years ago, which would allow for all the diversification to have occurred on extant islands. Founding events generally occurred from geologically older to younger islands with some islands colonized more than once. Six of the 11 named taxa can be associated with monophyletic maternal lineages. One, Geochelone porteri on Santa Cruz Island, consists of two distinct populations connected by the deepest node in the archipelago-wide phylogeny, whereas tortoises in northwest Santa Cruz are closely related to those on adjacent Pinzón Island. Volcan Wolf, the northernmost volcano of Isabela Island, consists of both a unique set of maternal lineages and recent migrants from other islands, indicating multiple colonizations possibly due to human transport or multiple colonization and partial elimination through competition. These genetic findings are consistent with the mixed morphology of tortoises on this volcano. No clear genetic differentiation between two taxa on the two southernmost volcanoes of Isabela was evident. Extinction of crucial populations by human activities confounds whether domed versus saddleback carapaces of different populations are mono- or polyphyletic. Our findings revealed a complex phylogeography and history for this tortoise radiation within an insular environment and have implications for efforts to conserve these endangered biological treasures.  相似文献   

14.

Background

The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr−1 at the end of the 21st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the ‘fast and slow’ processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system?

Methodology/Principal Findings

Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ13C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat.

Conclusions/Significance

Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to ‘fast’ and ‘slow’ environmental change between alternative stable states. This study highlights the need to incorporate a long-term ecological perspective when designing strategies for maximizing coastal resilience.  相似文献   

15.
We investigated phylogeographic divergence among populations of Galápagos warble finches. Their broad distribution, lack of phenotypic differentiation and low levels of genetic divergence make warbler finches an appropriate model to study speciation in allopatry. A positive relationship between genetic and geographical distance is expected for island taxa. Warbler finches actually showed a negative isolation by distance relationship, causing us to reject the hypothesis of distance-limited dispersal. An alternative hypothesis, that dispersal is limited by habitat similarity, was supported. We found a positive correlation between genetic distances and differences in maximum elevation among islands, which is an indicator of ecological similarity. MtDNA sequence variation revealed monophyletic support for two distinct species. Certhidea olivacea have recently dispersed among larger central islands, while some Certhidea fusca have recently dispersed to small islands at opposite ends of the archipelago. We conclude that females have chosen to breed on islands with habitats similar to their natal environment. Habitat selection is implicated as an important component of speciation of warbler finches, which is the earliest known divergence of the adaptive radiation of Darwin's finches. These results suggest that small populations can harbour cryptic but biologically meaningful variation that may affect longer term evolutionary processes.  相似文献   

16.
Carotenoids have received much attention from biologists because of their ecological and evolutionary implications in vertebrate biology. We sampled Galápagos land iguanas (Conolophus subcristatus) to investigate the types and levels of blood carotenoids and the possible factors affecting inter-population variation. Blood samples were collected from populations from three islands within the species natural range (Santa Cruz, Isabela, and Fernandina) and one translocated population (Venecia). Lutein and zeaxanthin were the predominant carotenoids found in the serum. In addition, two metabolically modified carotenoids (anhydrolutein and 3'-dehydrolutein) were also identified. Differences in the carotenoid types were not related to sex or locality. Instead, carotenoid concentration varied across the localities, it was higher in females, and it was positively correlated to an index of body condition. Our results suggest a possible sex-related physiological role of xanthophylls in land iguanas. The variation in the overall carotenoid concentration between populations seems to be related to the differences in local abundance and type of food within and between islands.  相似文献   

17.
An increased susceptibility to disease is one hypothesis explaining how inbreeding hastens extinction in island endemics and threatened species. Experimental studies show that disease resistance declines as inbreeding increases, but data from in situ wildlife systems are scarce. Genetic diversity increases with island size across the entire range of an extremely inbred Galápagos endemic bird, providing the context for a natural experiment examining the effects of inbreeding on disease susceptibility. Extremely inbred populations of Galápagos hawks had higher parasite abundances than relatively outbred populations. We found a significant island effect on constitutively produced natural antibody (NAb) levels and inbred populations generally harboured lower average and less variable NAb levels than relatively outbred populations. Furthermore, NAb levels explained abundance of amblyceran lice, which encounter the host immune system. This is the first study linking inbreeding, innate immunity and parasite load in an endemic, in situ wildlife population and provides a clear framework for assessment of disease risk in a Galápagos endemic.  相似文献   

18.
19.
The Galápagos petrel (Pterodroma phaeopygia) is endemic to the Galápagos archipelago, where it is known to breed only on five islands. The species has been listed as critically endangered due to habitat deterioration and predation by introduced mammals. Significant morphological and behavioural differences among petrels nesting on different islands suggest that island populations may differ genetically. Furthermore, nesting phenology suggests that genetically differentiated seasonal populations may exist within at least one island. We analysed variation in six microsatellite loci and part of the mitochondrial ATPase 6/8 gene in 206 Galápagos petrels sampled from all five islands. No evidence of genetic structuring within islands was found, although statistical power was low. In contrast, significant differences occurred among island populations. For the microsatellite loci, private alleles occurred at all islands, sometimes at high frequency; global and pairwise estimates of genetic differentiation were all statistically significant; Bayesian analysis of genotypes frequencies provided strong support for three genetic populations; and most estimates of migration between populations did not differ significantly from zero. Only two ATPase haplotypes were found, but the geographic distribution of haplotypes indicated significant differentiation among populations. For conservation purposes, populations from Floreana, Santa Cruz, San Cristóbal and Santiago should be regarded as separate genetic management units. Birds from Isabela appear to be derived recently from the Santiago population, and the population on San Cristóbal appears to be a mixture of birds from other populations. However, considering ecological and behavioural differences among birds from different islands, we recommend that all five populations be protected.  相似文献   

20.
Populations that are connected by immigrants play an important role in evolutionary and conservation biology, yet we have little direct evidence of how such metapopulations change genetically over evolutionary time. We compared historic (1894–1906) to modern (1988–2006) genetic variation in 11 populations of warbler finches at 14 microsatellite loci. Although several lines of evidence suggest that Darwin's finches may be in decline, we found that the genetic diversity of warbler finches has not generally declined, and broad‐scale patterns of variation remained similar over time. Contrary to expectations, inferred population sizes have generally increased over time (6–8%) as have immigration rates (8–16%), which may reflect a recent increase in the frequency and intensity of El Niño events. Individual island populations showed significant declines (18–19%) and also substantial gains (18–20%) in allelic richness over time. Changes in genetic diversity were correlated with changes in immigration rates, but did not correspond to population size or human disturbance. These results reflect the expected stabilizing properties of whole metapopulations over time. However, the dramatic and unpredictable changes observed in individual populations during this short time interval suggests that care should be taken when monitoring individual population fragments with snapshots of genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号