首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
Prolonged exposure to micro-gravity causes substantial bone loss (Leblanc et al., Journal of Bone Mineral Research 11 (1996) S323) and treadmill exercise under gravity replacement loads (GRLs) has been advocated as a countermeasure. To date, the magnitudes of GRLs employed for locomotion in space have been substantially less than the loads imposed in the earthbound 1G environment, which may account for the poor performance of locomotion as an intervention. The success of future treadmill interventions will likely require GRLs of greater magnitude. It is widely held that mechanical tissue strain is an important intermediary signal in the transduction pathway linking the external loading environment to bone maintenance and functional adaptation; yet, to our knowledge, no data exist linking alterations in external skeletal loading to alterations in bone strain. In this preliminary study, we used unique cadaver simulations of micro-gravity locomotion to determine relationships between localized tibial bone strains and external loading as a means to better predict the efficacy of future exercise interventions proposed for bone maintenance on orbit. Bone strain magnitudes in the distal tibia were found to be linearly related to ground reaction force magnitude (R(2)>0.7). Strain distributions indicated that the primary mode of tibial loading was in bending, with little variation in the neutral axis over the stance phase of gait. The greatest strains, as well as the greatest strain sensitivity to altered external loading, occurred within the anterior crest and posterior aspect of the tibia, the sites furthest removed from the neutral axis of bending. We established a technique for estimating local strain magnitudes from external loads, and equations for predicting strain during simulated micro-gravity walking are presented.  相似文献   

2.
Variation in upper limb long bone cross‐sectional properties may reflect a phenotypically plastic response to habitual loading patterns. Structural differences between limb bones have often been used to infer past behavior from hominin remains; however, few studies have examined direct relationships between behavioral differences and bone structure in humans. To help address this, cross‐sectional images (50% length) of the humeri and ulnae of university varsity‐level swimmers, cricketers, and controls were captured using peripheral quantitative computed tomography. High levels of humeral robusticity were found in the dominant arms of cricketers, and bilaterally among swimmers, whereas the most gracile humeri were found in both arms of controls, and the nondominant arms of cricketers. In addition, the dominant humeri of cricketers were more circular than controls. The highest levels of ulnar robusticity were also found in the dominant arm of cricketers, and bilaterally amongst swimmers. Bilateral asymmetry in humeral rigidity among cricketers was greater than swimmers and controls, while asymmetry for ulnar rigidity was greater in cricketers than controls. The results suggest that more mechanically loaded upper limb elements––unilaterally or bilaterally––are strengthened relative to less mechanically loaded elements, and that differences in mechanical loading may have a more significant effect on proximal compared to distal limb segments. The more circular humerus in the dominant arm in cricketers may be an adaptation to torsional strain associated with throwing activities. The reported correspondence between habitual activity patterns and upper limb diaphyseal properties may inform future behavioral interpretations involving hominin skeletal remains. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Primates are very versatile in their modes of progression, yet laboratory studies typically capture only a small segment of this variation. In vivo bone strain studies in particular have been commonly constrained to linear locomotion on flat substrates, conveying the potentially biased impression of stereotypic long bone loading patterns. We here present substrate reaction forces (SRF) and limb postures for capuchin monkeys moving on a flat substrate (“terrestrial”), on an elevated pole (“arboreal”), and performing turns. The angle between the SRF vector and longitudinal axes of the forearm or leg is taken as a proxy for the bending moment experienced by these limb segments. In both frontal and sagittal planes, SRF vectors and distal limb segments are not aligned, but form discrepant angles; that is, forces act on lever arms and exert bending moments. The positions of the SRF vectors suggest bending around oblique axes of these limb segments. Overall, the leg is exposed to greater moments than the forearm. Simulated arboreal locomotion and turns introduce variation in the discrepancy angles, thus confirming that expanding the range of locomotor behaviors studied will reveal variation in long bone loading patterns that is likely characteristic of natural locomotor repertoires. “Arboreal” locomotion, even on a linear noncompliant branch, is characterized by greater variability of force directions and discrepancy angles than “terrestrial” locomotion (significant for the forearm only), partially confirming the notion that life in trees is associated with greater variation in long bone loading. Directional changes broaden the range of external bending moments even further. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
The cross-sectional properties of mammalian limb bones provide an important source of information about their loading history and locomotor adaptations. It has been suggested, for instance, that the cross-sectional strength of primate limb bones differs from that of other mammals as a consequence of living in a complex arboreal environment (Kimura, 1991, 1995). In order to test this hypothesis more rigorously, we have investigated cross-sectional properties in samples of humeri and femora of 71 primate species, 30 carnivorans and 59 rodents. Primates differ from carnivorans and rodents in having limb bones with greater cross-sectional strength than mammals of similar mass. This might imply that primates have stronger bones than carnivorans and rodents. However, primates also have longer proximal limb bones than other mammals. When cross-sectional dimensions are regressed against bone length, primates appear to have more gracile bones than other mammals. These two seemingly contradictory findings can be reconciled by recognizing that most limb bones experience bending as a predominant loading regime. After regressing cross-sectional strength against the product of body mass and bone length, a product which should be proportional to the bending moments applied to the limb, primates are found to overlap considerably with carnivorans and rodents. Consequently, primate humeri and femora are similar to those of nonprimates in their resistance to bending. Comparisons between arboreal and terrestrial species within the orders show that the bones of arboreal carnivorans have greater cross-sectional properties than those of terrestrial carnivorans, thus supporting Kimura's general notion. However, no differences were found between arboreal and terrestrial rodents. Among primates, the only significant difference was in humeral bending rigidity, which is higher in the terrestrial species. In summary, arboreal and terrestrial species do not show consistent differences in long bone reinforcement, and Kimura's conclusions must be modified to take into account the interaction of bone length and cross-sectional geometry.  相似文献   

5.
Limb bones are designed to be strong enough to support the body and yet be energetically conservative during locomotion. Bones of the distal segment, which are relatively costly to move, are often more slender than bones of the proximal segments, even though they must sustain proportionally greater loads. As a result, they are expected to experience a higher incidence of microdamage. With this constraint in mind, Lieberman and Crompton (1998 Principles of Animal Design, Cambridge: Cambridge University Press, p. 78-86) proposed that bones response to strain varies along the proximo-distal axis of the limb. In order to avoid fatigue fractures due to the accumulation of microdamage, the distal segment, in comparison to the proximal segment, will have an increase in remodeling events to replace damaged bone. In this paper, we test the hypothesis of Lieberman and Crompton (1998) with respect to the human lower limb. With a sample of adult individuals, we compare tibiae and femora for mid-diaphyseal cross-sectional geometry and Haversian remodeling differences. Our results indicate that the human limb is not designed like that of quadrupedal cursorial animals. The tibia is not less resistant in bending and torsion, and does not remodel more than the femur. Our findings fail to support the hypothesis of Lieberman and Crompton (1998) and suggest, instead, that the human lower limb is not designed like a cursorial animal limb. In addition, our results support previous observations that remodeling is not uniform within the cross section of a bone, probably a reflection of different loading histories within the different regions of the cross section.  相似文献   

6.
The capacity of limb bones to resist the locomotor loads they encounter depends on both the pattern of those loads and the material properties of the skeletal elements. Among mammals, understanding of the interplay between these two factors has been based primarily on evidence from locomotor behaviors in upright placentals, which show limb bones that are loaded predominantly in anteroposterior bending with minimal amounts of torsion. However, loading patterns from the femora of opossums, marsupials using crouched limb posture, show appreciable torsion while the bone experiences mediolateral (ML) bending. These data indicated greater loading diversity in mammals than was previously recognized, and suggested the possibility that ancestral loading patterns found in sprawling lineages (e.g., reptilian sauropsids) might have been retained among basal mammals. To further test this hypothesis, we recorded in vivo locomotor strains from the femur of the nine‐banded armadillo (Dasypus novemcinctus), a member of the basal xenarthran clade of placental mammals that also uses crouched limb posture. Orientations of principal strains and magnitudes of shear strains indicate that armadillo femora are exposed to only limited torsion; however, bending is essentially ML, placing the medial aspect of the femur in compression and the lateral aspect in tension. This orientation of bending is similar to that found in opossums, but planar strain analyses indicate much more of the armadillo femur experiences tension during bending, potentially due to muscles pulling on the large, laterally positioned third trochanter. Limb bone safety factors were estimated between 3.3 and 4.3 in bending, similar to other placental mammals, but lower than opossums and most sprawling taxa. Thus, femoral loading patterns in armadillos show a mixture of similarities to both opossums (ML bending) and other placentals (limited torsion and low safety factors), along with unique features (high axial tension) that likely relate to their distinctive hindlimb anatomy. J. Morphol. 26:889–899, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Principal stresses acting in the midshafts of the radius and metacarpus of the horse were determined from in vivo strain recordings during locomotion and jumping. Ground forces and limb position were also recorded. Over a range of speed and gait the radius was subjected to considerable bending, whereas the metacarpus was loaded primarily in axial compression. As a result, peak stresses acting in the radius (maximum: –45 MN/m2) were consistently 50% greater than those acting in the metacarpus (maximum: –31 MN/m2). The increase in peak bone stress (radius: 119% and metacarpus; 114%) with increasing speed was matched by a 103% increase in the mass-specific vertical force ( A v) exerted on the limb and a 55% decline in duty factor of the limb. The forelimb was closely aligned with the direction of ground force during the support phase (<9° when peak force acted) to minimize bending forces exerted on the distal limb bones. Hence, bending of the radius resulted mainly from axial forces acting about its longitudinal curvature. This was in contrast to the metacarpus, which is a much straighter bone.
Significantly greater stresses were recorded in each bone during jumping: –81 MN/m2 in the radius and –53 MN/m2 in the metacarpus. While the distribution of loading in the radius was similar to that during steady state locomotion, greater variability in the magnitude and/or distribution of metacarpal loading was observed between animals, largely due to differences in the orientation of the limb during takeoff and landing. These data demonstrate that the horse, despite its large size, maintains a safety factor of nearly 3–4 during peak performance.  相似文献   

8.
In vitro comparative testing of fracture fixation implants is limited by the highly variable material properties of cadaveric bone. Bone surrogate specimens are often employed to avoid this confounding variable. Although validated surrogate models of normal bone (NB) exist, no validated bone model simulating weak, osteoporotic bone (OPB) is available. This study presents an osteoporotic long-bone model designed to match the lower cumulative range of mechanical properties found in large series of cadaveric femora reported in the literature. Five key structural properties were identified from the literature: torsional rigidity and strength, bending rigidity and strength, and screw pull-out strength. An OPB surrogate was designed to meet the low range for each of these parameters, and was mechanically tested. For comparison, the same parameters were determined for surrogates of NB. The OPB surrogate had a torsional rigidity and torsional strength within the lower 2% and 16%, respectively, of the literature based cumulative range reported for cadaveric femurs. Its bending rigidity and bending strength was within the lower 11% and 8% of the literature-based range, respectively. Its pull-out strength was within the lower 2% to 16% of the literature based range. With all five structural properties being within the lower 16% of the cumulative range reported for native femurs, the OPB surrogate reflected the diminished structural properties seen in osteoporotic femora. In comparison, surrogates of NB demonstrated structural properties within 23-118% of the literature-based range. These results support the need and utility of the OPB surrogate for comparative testing of implants for fixation of femoral shaft fractures in OPB.  相似文献   

9.
Differential response of rat limb bones to strenuous exercise   总被引:4,自引:0,他引:4  
We examined the influence of a strenuous exercise regimen on tibial and metatarsal bones to show not only how the geometric, histological, and mechanical properties of immature bone respond to strenuous exercise but also how long bones within the same limb may respond differentially to exercise. Female Sprague-Dawley rats (8 wk old) were divided randomly into two groups: a sedentary control (n = 15) and an exercised group (n = 15). The exercise intensity was 80-90% of maximum oxygen capacity 5 days/wk for 10 wk. Mechanical properties of tibia and second metatarsus (MT) were determined with three-point bending, and contralateral bones were used for geometric and histological analyses. Length and middiaphyseal cross-sectional geometry of the exercised tibiae were significantly less than controls, but material properties were not different. The exercised tibiae had significantly lower structural properties (e.g., loads at the proportional limit and maximum and energy at failure load). The middiaphyseal dorsal cortex of exercised MT was significantly thicker than controls, but tensile stress at the proportional limit and elastic modulus of exercised MT were significantly less than controls. The average number of osteons and osteocytes per unit area of the tibial middiaphysis was significantly greater in the exercised group--especially in lateral and posterior cortices. The number of osteons and osteocytes per unit area in the MT, however, was significantly less in the exercised group. The differential effects of strenuous exercise on tibia and MT suggest that local loading and bone-specific responses have important roles in modulating the response of immature bone to strenuous exercise.  相似文献   

10.
Over 25 million Americans suffer from osteoporosis. Bone size and strength depends both upon the level of adaptation due to physical activity (applied load), and genetics. We hypothesized that bone adaptation to loads differs among mice breeds and bone sites. Forty-five adult female mice from three inbred strains (C57BL/6 [B6], C3H/HeJ [C3], and DBA/2J [D2]) were loaded at the right tibia and ulna in vivo with non-invasive loading devices. Each loading session consisted of 99 cycles at a force range that induced approximately 2000 microstrain (microepsilon) at the mid-shaft of the tibia (2.5 to 3.5 N force) and ulna (1.5 to 2 N force). The right and left ulnae and tibiae were collected and processed using protocols for histological undecalcified cortical bone slides. Standard histomorphometry techniques were used to quantify new bone formation. The histomorphometric variables include percentage mineralizing surface (%MS), mineral apposition rate (MAR), and bone formation rate (BFR). Net loading response [right-left limb] was compared between different breeds at tibial and ulnar sites using two-way ANOVA with repeated measures (p<0.05). Significant site differences in bone adaptation response were present within each breed (p<0.005). In all the three breeds, the tibiae showed greater percentage MS, MAR and BFR than the ulna at similar in vivo load or mechanical stimulus (strain). These data suggest that the bone formation due to loading is greater in the tibiae than the ulnae. Although, no significant breed-related differences were found in response to loading, the data show greater trends in tibial bone response in B6 mice as compared to D2 and C3 mice. Our data indicate that there are site-specific skeletal differences in bone adaptation response to similar mechanical stimulus.  相似文献   

11.
We examined patterns of variation in the mineral content of the wing skeleton of the Mexican free-tailed bat, Tadarida brasiliensis. We ashed humeri, radii, metacarpals II-V, and phalanges of digit III, and quantified mineralization differences among elements at specific ages, and ontogenetically for each element. The most mineralized elements are the humerus and the radius, followed by the metacarpals, of which the third and fifth are the most mineralized. The proximal and middle phalanges of the third digit exhibit the lowest mineral content, and the distal phalanges have no mineral content according to our ashing protocol. Histological examination shows a thin (< 10 μm) shell of unmineralized osteoid surrounding a cartilaginous core in distal phalanges. Mineral content of each bone increases linearly with age during post-natal development, but there are differences in the rate and extent of this increase among the different elements.
The mineralizaton differences we observed parallel substantially different bone loading patterns found in different parts of the wing in other studies. The humerus and radius are subjected to large torsional loads during flight, while the metacarpals and phalanges experience dorsoventral bending. The high mineral content of the humerus and radius and the low mineral content of the metacarpals and phalanges may resist torsion proximally and promote bending distally. Furthermore, the decrease in mineral content along the wing's proximodistal axis decreases bone mass disproportionately at the wing tips, where the energetic cost of accelerating and decelerating limb mass is greatest.  相似文献   

12.
Structural and mechanical indicators of limb specialization in primates   总被引:5,自引:0,他引:5  
The structural mechanics of femora and humeri from primates representing a wide spectrum of habitual locomotor activities were examined to determine how cross-sectional properties vary with functional specializations of the extremities. Average bending rigidities of the midshaft of humerus and femur were measured in 60 individuals of four nonhuman primate species (Macaca nemestrina, Macaca fascicularis, Presbytis cristata, Hylobates lar) using single-beam photon absorptiometry. Linear regression analyses of the loge transformed data were used to assess the relative usage of the forelimb and hindlimb in propulsion and weight bearing, and to evaluate deviations from generalized mammalian quadrupedalism. The results suggest that average bending rigidities of the humerus and femur in primates reflect the extent to which the forelimb and hindlimb are used differently in locomotion; deviations of average bending rigidity from geometric similarity indicate functional variations from generalized mammalian quadrupedalism and the ratio of humeral to femoral bending rigidity can be used to identify trends towards hindlimb or forelimb dominance in locomotion and can be employed in general to determine how the limb was used.  相似文献   

13.
14.
There are conflicting data on whether age reduces the response of the skeleton to mechanical stimuli. We examined this question in female BALB/c mice of different ages, ranging from young to middle-aged (2, 4, 7, 12 months). We first assessed markers of bone turnover in control (non-loaded) mice. Serum osteocalcin and CTX declined significantly from 2 to 4 months (p<0.001). There were similar age-related declines in tibial mRNA expression of osteoblast- and osteoclast-related genes, most notably in late osteoblast/matrix genes. For example, Col1a1 expression declined 90% from 2 to 7 months (p<0.001). We then assessed tibial responses to mechanical loading using age-specific forces to produce similar peak strains (-1300 με endocortical; -2350 με periosteal). Axial tibial compression was applied to the right leg for 60 cycles/day on alternate days for 1 or 6 weeks. qPCR after 1 week revealed no effect of loading in young (2-month) mice, but significant increases in osteoblast/matrix genes in older mice. For example, in 12-month old mice Col1a1 was increased 6-fold in loaded tibias vs. controls (p = 0.001). In vivo microCT after 6 weeks revealed that loaded tibias in each age group had greater cortical bone volume (BV) than contralateral control tibias (p<0.05), due to relative periosteal expansion. The loading-induced increase in cortical BV was greatest in 4-month old mice (+13%; p<0.05 vs. other ages). In summary, non-loaded female BALB/c mice exhibit an age-related decline in measures related to bone formation. Yet when subjected to tibial compression, mice from 2-12 months have an increase in cortical bone volume. Older mice respond with an upregulation of osteoblast/matrix genes, which increase to levels comparable to young mice. We conclude that mechanical loading of the tibia is anabolic for cortical bone in young and middle-aged female BALB/c mice.  相似文献   

15.
The aims of this study were to describe the curvature of anthropoid limb bones quantitatively, to determine how limb bone curvature scales with body mass, and to discuss how bone curvature influences static measures of bone strength. Femora and humeri in six anthropoid genera of Old World monkeys, New World monkeys, and gibbons were used. Bone length, curvature, and cross-sectional properties were incorporated into the analysis. These variables were obtained by a new method using three-dimensional morphological data reconstructed from consecutive CT images. This method revealed the patterns of curvature of anthropoid limb bones. Log-transformed scaling analyses of the characters revealed that bone length and especially bone curvature strongly reflected taxonomic/locomotor differences. As compared with Old World monkeys, New World monkeys and gibbons in particular have a proportionally long and less curved femur and humerus relative to body mass. It is also revealed that the section modulus relative to body mass varies less between taxonomic/locomotor groups in anthropoids. Calculation of theoretical bending strengths implied that Old World monkeys achieve near-constant bending strength in accordance with the tendency observed in general terrestrial mammals. Relatively shorter bone length and larger A-P curvature of Old World monkeys largely contribute to this uniformity. Bending strengths in New World monkeys and gibbons were, however, a little lower under lateral loading and extremely stronger and more variable under axial loading as compared with Old World monkeys, due to their relative elongated and weakly curved femora and humeri. These results suggest that arboreal locomotion, including quadrupedalism and suspension, requires functional demands quite dissimilar to those required in terrestrial quadrupedalism.  相似文献   

16.
During hominin plantigrade locomotion, the weight-bearing function of the fibula has been considered negligible. Nevertheless, studies conducted on human samples have demonstrated that, even if less than that of the tibia, the load-bearing function of the fibula still represents a considerable portion of the entire load borne by the leg. The present study assesses whether variation in habitual lower limb loading influences fibular morphology in a predictable manner. To achieve this, both fibular and tibial morphology were compared amongst modern human athletes (field hockey players and cross-country runners) and matched sedentary controls. Peripheral quantitative computed tomography was used to capture two-dimensional, cross-sectional bone images. Geometric properties were measured at the midshaft for each bone. Results show a trend of increased fibular rigidity from control to runners through to field hockey players. Moreover, relative fibular robusticity (fibula/tibia) is significantly greater in hockey players compared with runners. These results are likely the consequence of habitual loading patterns performed by these athletes. Specifically, the repeated directional changes associated with field hockey increase the mediolateral loading on the lower leg in a manner that would not necessarily be expected during cross-country running. The present study validates the use of the fibula in association with the tibia as a mean to provide a more complete picture of leg bone functional adaptations. Therefore, the fibula can be added to the list of bones generally used (tibia and femur) to assess the correspondence between mobility patterns and skeletal morphology for past human populations.  相似文献   

17.
Comparative studies of long bone biomechanics in primates frequently use the polar moment of inertia (J ) as a variable reflecting overall mechanical rigidity, average bending rigidity, or resistance to torsional shear stresses. While the use of this variable for characterizing the first two properties is appropriate, it is potentially a highly misleading measure of torsional resistance. Errors result from violations of assumptions required for the use of the polar moment of inertia; in particular, the predictive utility of J diminishes with departures from axial symmetry (i.e., a cylindrical cross-sectional shape). The magnitude of these errors is estimated both theoretically and experimentally. It is argued that the use of the polar moment of inertia for estimating long bone torsional rigidity should be restricted to samples of relatively invariant and/or cylindrical geometry. Alternative measures for torsional resistance are evaluated and reviewed.  相似文献   

18.
Mobility patterns affect the loads placed on the lower limbs during locomotion and may influence variation in lower limb diaphyseal robusticity and shape. This relationship commonly forms the basis for inferring mobility patterns from hominin fossil and skeletal remains. This study assesses the correspondence between athletic histories, varying by loading intensity, repetition and directionality, measured using a recall questionnaire, and peripheral quantitative computed tomography‐derived measurements of tibial diaphysis rigidity and shape. Participants included male university varsity cross‐country runners (n = 15), field hockey players (n = 15), and controls (n = 20) [mean age: 22.1 (SD +/? 2.6) years]. Measurements of tibial rigidity (including J, %CA, Imax, Imin, and average cortical thickness) of both runners and field hockey players were greater than controls (P ≤ 0.05). Differences in tibial shape (Imax/Imin, P ≤ 0.05) between runners and hockey players reflect pronounced maximum plane (Imax) rigidity in runners, and more symmetrical hypertrophy (Imax, Imin) among hockey players. This corresponds with the generally unidirectional locomotor patterns of runners, and the multidirectional patterns of hockey players. These results support the relationship between mobility and tibial diaphysis morphology as it is generally interpreted in the anthropological literature, with greater levels of mobility associated with increased diaphyseal robusticity and shape variation. Although exercise intensity may be the primary influence on these properties, the repetitiveness of the activity also deserves consideration. In conclusion, bone morphological patterns can reflect habitual behaviors, with adaptation to locomotor activities likely contributing to variation in tibial rigidity and shape properties in archaeological and fossil samples. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Quantitative measures for fracture healing: an in-vitro biomechanical study   总被引:1,自引:0,他引:1  
A method is presented to assess the functional capabilities of plated osteotomized canine femora as load bearing structures and to quantify their healing status. In this method the osteotomized bones and their intact contralateral controls are tested in nondestructive bending, in twenty-four planes of loading at 15 degree angular increments. Flexural rigidity (EI), in each of the planes, is determined by using classical beam theory. It has been found that the EI values have the expected elliptical distribution. The 24 EI values, obtained for each bone, are curve fitted by regression analysis and the characteristics of each bone are described by the three parameters defining its ellipse. The parameters of the ellipses of the osteotomized bone and of its contralateral control are used to define four new parameters that may serve as measures for the healing efficiency. One of these serves as an indicator for the fragility of the healed bone and the other three add quantitative information on its mechanical state.  相似文献   

20.

Background

The ostrich Struthio camelus reaches the highest speeds of any extant biped, and has been an extraordinary subject for studies of soft-tissue anatomy and dynamics of locomotion. An elongate tarsometatarsus in adult ostriches contributes to their speed. The internal osteology of the tarsometatarsus, and its mechanical response to forces of running, are potentially revealing about ostrich foot function.

Methods/Principal Findings

Computed tomography (CT) reveals anatomy and bone densities in tarsometatarsi of an adult and a young juvenile ostrich. A finite element (FE) model for the adult was constructed with properties of compact and cancellous bone where these respective tissues predominate in the original specimen. The model was subjected to a quasi-static analysis under the midstance ground reaction and muscular forces of a fast run. Anatomy–Metatarsals are divided proximally and distally and unify around a single internal cavity in most adult tarsometatarsus shafts, but the juvenile retains an internal three-part division of metatarsals throughout the element. The juvenile has a sparsely ossified hypotarsus for insertion of the m. fibularis longus, as part of a proximally separate third metatarsal. Bone is denser in all regions of the adult tarsometatarsus, with cancellous bone concentrated at proximal and distal articulations, and highly dense compact bone throughout the shaft. Biomechanics–FE simulations show stress and strain are much greater at midshaft than at force applications, suggesting that shaft bending is the most important stressor of the tarsometatarsus. Contraction of digital flexors, inducing a posterior force at the TMT distal condyles, likely reduces buildup of tensile stresses in the bone by inducing compression at these locations, and counteracts bending loads. Safety factors are high for von Mises stress, consistent with faster running speeds known for ostriches.

Conclusions/Significance

High safety factors suggest that bone densities and anatomy of the ostrich tarsometatarsus confer strength for selectively critical activities, such as fleeing and kicking predators. Anatomical results and FE modeling of the ostrich tarsometatarsus are a useful baseline for testing the structure’s capabilities and constraints for locomotion, through ontogeny and the full step cycle. With this foundation, future analyses can incorporate behaviorally realistic strain rates and distal joint forces, experimental validation, and proximal elements of the ostrich hind limb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号