首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helper (CD4+) T lymphocytes recognize protein Ag as peptides associated to MHC class II molecules. The polymorphism of class II alpha- and beta-chains has a major influence on the nature of the peptides presented to CD4+ T lymphocytes. For instance, T cell responses in H-2k and H-2b mice are directed at different epitopes of the hen egg lysozyme (HEL) molecule. The current studies were undertaken with the aim of defining the role of mixed haplotype I-A (alpha k beta b and alpha b beta k) molecules in T cell responses to HEL in (H-2k x H-2b)F1 mice, as well as the nature of the immunogenic peptides of HEL recognized in the context of I-A alpha k beta b and I-A alpha b beta k. A series of HEL-reactive T cell lines and hybridomas derived from MHC class II heterozygous (C57BL/6 x C3H F1) mice were established. Their responsiveness to HEL and synthetic HEL peptides was analyzed with the use of L cells transfected with either I-A alpha k beta b or I-A alpha b beta k as APC. Out of 28 clonal T cell hybridomas tested, 13 (46%) only responded to HEL presented by I-A alpha k beta b, 11 (40%) by I-A alpha b beta k (and to a minor extent I-A alpha k beta k), only 4 (14%) were primarily restricted by I-Ak, and none by I-Ab. All the I-A alpha k beta b-restricted T cell hybridomas responded to the HEL peptide 46-61 and to its shorter fragment 52-61, even at concentrations as low as 0.3 nM. As this determinant has been previously defined as immunodominant for I-Ak but not for I-Ab mice, these results suggest a role for the I-A alpha k chain in the selection and immunodominance of HEL 52-61 in H-2k mice. The fine specificity of I-A alpha k beta b-restricted T cell hybridomas for a series of different HEL peptides around the sequence 52 to 61 suggests that peptide 52-61 binds to I-A alpha k beta b with higher affinity than to I-A alpha k beta k. The peptides recognized in the context of I-A alpha b beta k and I-A alpha k beta k were not identified.  相似文献   

2.
Class II-restricted murine T cell clones specific for the immunogenic determinant L-tyrosine-p-azobenzenearsonate failed to proliferate to Ag presented by L cell lines transfected with and expressing the appropriate class II genes, but are activated to kill the APC in an Ag-dependent, MHC-restricted manner. Inhibition of APC proliferation was used as an assay to determine the relative contributions of polymorphic sites on the class II alpha- and beta-chains to MHC-restricted activation of I-A beta k-restricted cloned T cells. Transfectants expressing A beta k in conjunction with the alpha chain of k, u, or d were equally effective APCs, whereas transfectants expressing A beta u were completely ineffective, implicating the beta-chain as more critical for the presentation of L-tyrosine-p-azobenzenearsonate. Site-directed mutagenesis of polymorphic positions in the beta chain revealed a remarkable stringency for the k haplotype, in contrast to the relaxed alpha-chain requirement. These results, in conjunction with others, indicate that the relative contribution of polymorphic sites on class II alpha- and beta-chains to T cell Ag recognition can differ markedly, and, furthermore, may vary as a function of the Ag.  相似文献   

3.
The class II molecules of the MHC not only bind processed antigenic peptides but also interact with the TCR. This latter interaction is thought to be the basis for allele specific "restriction" of Ag presentation to T cells. The specificity of this interaction is likely due to amino acid differences in a small number of polymorphic or "hypervariable" regions located in the amino terminal domains of the alpha- and beta-chains. We have explored the functional significance of these polymorphic regions in an I-Ak-restricted, hen egg lysozyme specific Ag presentation system in which the measurement of IL-2 production by T cell hybridomas was used as the indicator of TCR recognition of the I-A/Ag complex. Chimeric I-A molecules, in which b allelic residues were substituted in one or more of the polymorphic regions of the A alpha k chain or in which d allelic residues were substituted in one or more of the polymorphic regions of the A beta k chain, were used to examine the contribution of each polymorphic region of the molecule to its function. The results obtained demonstrate that the regions between residues 69 to 76 of the A alpha k chain and the regions between residues 63 to 67 and 75 to 78 of the A beta k-chain exert a dominant effect on the presentation of lysozyme peptides by I-Ak to the T cell hybridomas in our panel. These observations were confirmed and extended by the analysis of Ag presentation by seven serologically selected mutants, all of which have amino acid interchanges in or around the dominant polymorphic regions. The results suggest that the serologically selected mutants fail to present Ag not because they fail to bind the peptide Ag but because the amino acid substitutions destabilize the interaction between the Ia/peptide complex and the TCR. Use of the recently published hypothetical model for class II structure to interpret the Ag presentation results suggests that the dominant polymorphic regions lie across from one another near one end of the alpha-helices that form the two walls of the proposed Ag-binding cleft located on the top surface of the class II molecule. Furthermore, the majority of the amino acids which have been changed in the serologically selected mutants have side chains which are postulated to point up toward the exterior of the molecule and would, therefore, be potential contact residues for the TCR.  相似文献   

4.
Two variants of the AKR thymoma BW5147 have been isolated which can no longer express functional TCR alpha- and beta-chains. By generating hybridomas with these variant fusion lines, TCR of any normal T lymphocyte, including TCR-gamma/delta, can be studied at a clonal level, without interference of the BW5147-derived receptor chains. In this study one of the variants has been useful in identifying the reactivity to allogeneic MHC Ag of BW5147 itself.  相似文献   

5.
The interaction between the clonally selected TCR, the processed Ag peptide and the Ia molecule is not fully understood in molecular terms. Our study intended to delineate the residues of Ab alpha molecules that function as contact sites for Ag and for the TCR of a panel of T cells specific for the A chain of insulin in combination with mixed haplotype Ab alpha:Ak beta molecules. Multiple L cell transfectants expressing alpha,beta-heterodimers composed of wild-type A beta- and chimeric or mutant A alpha-chains served as antigen presenting cells. The recombinant A alpha-chains had been generated by an exchange of allelically hypervariable regions (ahv) or amino acids. The results point out a broad spectrum of b sequence requirements for the bovine insulin-specific activation of the various T cell populations. Activation of some T cells seemed quite permissive, requiring b-haplotype amino acids in any one of the three ahv, while others had strict requirements, demanding b-haplotype sequence in all three ahv. Our data stress the role of ahvII and especially ahvIII in T cell activation. Interestingly, single amino-acid substitutions in ahvII or ahvIII of Ak alpha were sufficient to bring up full stimulation potential for two T cell hybridomas. We also found that some ahv permutations influenced the Ag preference (beef insulin versus pig insulin) of some T cells. These data suggest a critical role for the three-dimensional structure of the complex formed by Ia and the processed Ag peptide. The stability of the trimolecular complex essential for T cell activation is envisioned as being the sum of the interactions between Ag/I-A, TCR/Ag, and TCR/I-A, each variable in strength and compensated for by the others.  相似文献   

6.
Current models suggest that Ag undergoes proteolytic cleavage in APC and that resultant peptide fragments associate with class II histocompatibility glycoproteins before recognition by helper T cells. Little direct information is available concerning the physical structure and membrane association of Ag processed under physiologic conditions. A model system, employing a series of biotinylated insulin derivatives, was used to examine the domains of Ag that are presented by APC. We reasoned that avidin should block the response of T cells to a given derivative only if biotin is retained on the functionally relevant form of Ag after processing. By utilizing derivatives modified at selected sites one should be able to determine whether specific sites remain after processing. By using F1 APC pulsed with biotinyl-insulin derivatives modified through the free amino groups of the A1, B1, or B29 amino acids, and T cell hybridomas restricted to I-Ad or I-Ab, we found that avidin inhibited the I-Ad-restricted response to A1, but not B1 or B29 derivatives. By contrast, specific inhibition of the I-Ab-restricted response was observed by using all three derivatives. These results suggest that the processed form of insulin recognized in association with I-Ab is largely intact and includes residues from both chains (A1, B1, and B29). The differential inhibition observed by using T cells restricted to different class II alleles demonstrates that processed Ag associated with I-Ab differs in conformation or structure from that associated with I-Ad. This experimental approach should prove valuable in characterizing the actual structure of processed Ag recognized by T cells.  相似文献   

7.
T cell reactivity toward self MHC class II molecules has been recognized in syngeneic MLR in a number of studies, where the T cells are believed to recognize the combination of self/nonself peptide and self MHC molecule. We investigated the stimulation of T cell proliferation by synthetic peptides of sequences corresponding to the first polymorphic amino terminal domain of alpha- and beta-chains of self I-A molecules. Both unprimed and primed T cells responded to a number of peptides of alpha 1 and beta 1 domains of self I-Ad molecules. The response was dependent on the presentation of I-Ad peptides by syngeneic APC and was blocked by anti-class II MHC mAb. Upon further investigation it was observed that I-Ad peptides could inhibit the stimulation of Ag-specific MHC class II-restricted T cell hybridoma due to self presentation of peptides rather than to direct binding of free peptides to the TCR, further supporting their affinity/interaction with intact self MHC class II molecules. The peptide I-A beta d 62-78 showed high affinity toward intact self MHC II molecule as determined by the inhibition of Ag-specific T cell stimulation and yet was nonstimulatory for syngeneic T cells, therefore representing an MHC determinant that may have induced self tolerance. Thus we have shown that strong T cell proliferative responses can be generated in normal mice against the peptides derived from self MHC class II molecules and these cells are part of the normal T cell repertoire. Therefore complete tolerance toward potentially powerful immunodominant but cryptic determinants of self Ag may not be necessary to prevent autoimmune diseases.  相似文献   

8.
The T cell response to lambda-repressor is directed to a 15 amino acid peptide (P12-26) of the protein in A/J mice. Previous studies have demonstrated a preferential use of V alpha 2 and V beta 1 amongst the T cell hybridomas specific for P12-26 in the context of I-Ek. By using the polymerase chain reaction, the sequences of a panel of the T cells using V alpha 2 and V beta 1 were determined. A highly conserved alpha-chain V-J junctional sequence was found in six of the eight T cell hybrids. This consensus alpha-chain VJ sequence may be combined with different members of V alpha 2, indicating a more restricted selection on the junctional region than on the V element in these T cells. In contrast, greater diversities were found on the V-D-J region of beta-chains despite the same V beta 1 and J beta 2.1 were used. However, a highly conserved glutamic acid residue was found at the same position of beta-chains where a similar conservation was identified in cytochrome c-specific T cells. The correlation of the TCR sequence with the fine specificities of these T cells suggests that a single amino acid deletion in the V alpha-J alpha region may reduce the P12-26 response and abolish the recognition of an altered peptide [Phe22] P12-26. In addition, three amino acid difference in the V-D-J region of the beta-chain also determine the P12-26 reactivity. Thus the V(D)J junctional regions of both alpha- and beta-chains may be critical for the recognition of the peptide Ag presented by the specific MHC molecule.  相似文献   

9.
The CD45 protein tyrosine phosphatase regulates Ag receptor signaling in T and B cells. In the absence of CD45, TCR coupling to downstream signaling cascades is profoundly reduced. Moreover, in CD45-null mice, the maturation of CD4+CD8+ thymocytes into CD4+CD8- or CD4-CD8+ thymocytes is severely impaired. These findings suggest that thymic selection may not proceed normally in CD45-null mice, and may be biased in favor of thymocytes expressing TCRs with strong reactivity toward self-MHC-peptide ligands to compensate for debilitated TCR signaling. To test this possibility, we purified peripheral T cells from CD45-null mice and fused them with the BWalpha-beta- thymoma to generate hybridomas expressing normal levels of TCR and CD45. The reactivity of these hybridomas to self or foreign MHC-peptide complexes was assessed by measuring the amount of IL-2 secreted upon stimulation with syngeneic or allogeneic splenocytes. A very high proportion (55%) of the hybridomas tested reacted against syngeneic APCs, indicating that the majority of T cells in CD45-null mice express TCRs with high avidity for self-MHC-peptide ligands, and are thus potentially autoreactive. Furthermore, a large proportion of TCRs selected in CD45-null mice (H-2b) were also shown to display reactivity toward closely related MHC-peptide complexes, such as H-2bm12. These results support the notion that modulating the strength of TCR-mediated signals can alter the outcome of thymic selection, and demonstrate that CD45, by molding the window of affinity/avidity for positive and negative selection, directly participates in the shaping of the T cell repertoire.  相似文献   

10.
A20.2J B lymphoma cells have been co-transfected with the A alpha b, A beta b or with the A alpha b, A beta bm12 and neomycin resistance genes. The transfected cell lines constitutively express the I-Ab or I-Abm12 class II molecules at a level comparable with that of the endogenous I-Ad antigen. The I-Ab antigens expressed on three independently transfected B cell clones (A20.Ab.1, A20.Ab.2, and A20.Ab.3) are serologically and functionally indistinguishable from the I-Ab molecules expressed by control H-2bxd B hybridoma cells (LB cells). These transfected cell lines were potent I region-restricted antigen-presenting cells to a large panel of antigen-specific, autoreactive and alloreactive T cell hybridomas, as well as normal T cell clones. There were not significant differences in the efficiency of antigen presentation by the Ia molecules encoded by the transfected, as compared with the endogenous, I-A genes. The expression of a functional I-Ab antigen on the surface of cells transfected with A beta bm12 and A alpha b genes is consistent with previous work that implicated the A beta-chain alone in the bm 12 mutation. Furthermore, because the transfected A20.Ab and A20.Abm12 cells display the serologic and functional properties of normal spleen cells from the wild-type and mutant mouse strains, respectively, it is clear that class II genes do not undergo unexpected and unpredictable alterations after transfection in this system. This system permits us to investigate the structural requirements for interactions between class II major histocompatibility complex antigens, a foreign antigen, and the T cell receptor by in vitro site-directed mutagenesis coupled with DNA-mediated gene transfer.  相似文献   

11.
Intrathymic, Ia-bearing antigen-presenting cells (APC) are believed to play an important role in the development of a mature, functional T-cell repertoire. We used chronic in vivo treatment of neonatal mice with anti-I-A monoclonal Ab (MAb) to examine the expression of I-A and I-E antigens on intrathymic and peripheral APC. Three weeks after continuous treatment with anti-I-A MAb, FACS analysis of unfractionated spleen cells revealed a 75-90% reduction in the number of I-A bearing cells. Splenic antigen-presenting capacity measured by the ability of unseparated or density gradient-enriched APC to stimulate I-A- or I-E-reactive T-cell hybridomas was also greatly reduced. In contrast to the expression of I-A and I-E molecules in the splenic APC, anti-I-A MAb treatment resulted in decreased thymic APC I-A expression without significant changes in I-E as measured by FACS analysis. This was confirmed in functional studies in which allo-I-A- or auto-I-A-reactive T-cell hybridomas could not be stimulated by treated thymic APC. Unlike splenic APC, anti-I-A-treated thymic APC did not differ significantly from normals in their ability to stimulate allo-I-E-reactive T hybridomas. This lack of linkage or comodulation of I-A and I-E expression on thymic but not splenic APC may allow us to study the role of I-A molecules and I-E molecules on the development and expansion of functional, mature T-cell repertoires.  相似文献   

12.
Yersinia enterocolitica produces superantigenic activity.   总被引:9,自引:0,他引:9  
We have recently observed that antigenic preparations from Yersinia enterocolitica are capable of inducing strong proliferative responses in normal murine spleen cell cultures. As a consequence of this observation, we evaluated whether Yersinia-derived Ag possess superantigenic activity. Stimulatory activity can be found in culture supernatants, as well as membrane and cytoplasmic fractions of Y. enterocolitica. Cell depletion studies indicate that the primary responding cell is a CD4+ T cell, which requires the presence of APC for responsiveness to Y. enterocolitica Ag. Furthermore, these APC must express MHC class II Ag, as evidenced by the fact that either antibody depletion of class II+ APC or addition of anti-class II antibodies (that block class II Ag on the surface of APC) eliminates the proliferative response. Evaluation of TCR usage by BALB/c T cells responsive to Y. enterocolitica revealed that those T cells bearing V beta 3, 6, and 11 and possibly 7 and 9 were expanded after exposure to Y. enterocolitica Ag preparations. By using a panel of T cell hybridomas, we have shown that hybridomas bearing V beta 3, 7, 8.1, 9, and 11 but not 2, 8.2, 8.3, and 13 respond to Yersinia. When cytoplasmic fractions of Y. enterocolitica were subjected to column chromatography, proliferative activity was enriched approximately 27-fold, and the elution characteristics of the active material suggest that it possesses hydrophobic regions and is, therefore, probably membrane associated. These data indicate that Y. enterocolitica produces antigenic material that has properties consistent with those of T cell superantigens.  相似文献   

13.
We have used TCR transgenic mice directed to different MHC class II-restricted determinants from the influenza virus hemagglutinin (HA) to analyze how specificity for self-peptides can shape CD4+CD25+ regulatory T (Treg) cell formation. We show that substantial increases in the number of CD4+CD25+ Treg cells can occur when an autoreactive TCR directed to a major I-E(d)-restricted determinant from HA develops in mice expressing HA as a self-Ag, and that the efficiency of this process is largely unaffected by the ability to coexpress additional TCR alpha-chains. This increased formation of CD4+CD25+ Treg cells in the presence of the self-peptide argues against models that postulate selective survival rather than induced formation as mechanisms of CD4+CD25+ Treg cell formation. In contrast, T cells bearing a TCR directed to a major I-A(d)-restricted determinant from HA underwent little or no selection to become CD4+CD25+ Treg cells in mice expressing HA as a self-Ag, correlating with inefficient processing and presentation of the peptide from the neo-self-HA polypeptide. These findings show that interactions with a self-peptide can induce thymocytes to differentiate along a pathway to become CD4+CD25+ Treg cells, and that peptide editing by DM molecules may help bias the CD4+CD25+ Treg cell repertoire away from self-peptides that associate weakly with MHC class II molecules.  相似文献   

14.
We have studied the relationship between MHC-restricted, Ag-specific recognition and TCR structure in a panel of seven Th-hybridomas specific for the foreign protein Ag, hen egg-white lysozyme, and the I-Ak class II MHC molecule. The fine specificity of these Th cells had been determined previously by their reactivity to a panel of APC lines bearing mutant I-Ak molecules and to proteolytic fragments of HEL. TCR gene segment composition was determined by cDNA cloning and DNA sequencing. A heterogeneous, yet repetitive usage of gene segments was observed within the panel. The same V alpha C10-J alpha MD13 rearrangement was used in three of the hybridomas, two with identical Ag and MHC-restriction fine specificities. The prevalent usage of the V beta 14 gene segment and members of J beta 2 cluster was noted. Inasmuch as gene segment usage did not correlate with MHC-restriction or Ag fine specificity alone, these results favor an interactive Ag model of T-cell recognition, in which Ag and MHC are recognized as a bimolecular complex.  相似文献   

15.
CD5 deficiency results in a hyper-responsive phenotype to Ag receptor stimulation. Here we show that the development and responses of CD4 lineage T cells are regulated by the function of CD5. Thymocytes expressing the I-Ad-restricted DO11.10 TCR undergo abnormal selection without CD5. In H-2d mice, the absence of CD5 causes deletion of double-positive thymocytes, but allows for efficient selection of cells expressing high levels of the DO11.10 clonotype. By contrast, there is enhanced negative selection against the DO11.10 clonotype in the presence of I-Ab. T cell hybridomas and DO11.10 T cells are more responsive to TCR stimulation in the absence of CD5. Such hypersensitivity can be eliminated by expression of wild-type CD5, but not by a form of CD5 that lacks the cytoplasmic tail. Finally, CD5 deficiency partially suppresses the block of CD4 lineage development in CD4-deficient mice. Taken together, the data support a general role for CD5 as a negative regulator of Ag receptor signaling in the development and immune responses of CD4 lineage T cells.  相似文献   

16.
A vertebrate immune response is initiated by the presentation of foreign protein Ag to MHC class II-restricted T lymphocytes by specialized APC. Presentation of self-peptides in association with MHC class II molecules is also necessary for the induction of T cell tolerance. It is important to understand whether functionally divergent APC are responsible for delivering these distinct signals to class II-restricted T cells. Here we examine the ability of I-Ad surface molecules expressed in diverse cell types to stimulate I-Ad-restricted T cells. Recipients included J558L myeloma cells and EL4 lymphoma cells expressing barely detectable or undetectable levels of Ii chain mRNA. This allowed us to examine the influence of Ii expression on the presentation of intracellular Ag and thus test the hypothesis that Ii chain is necessary to prevent access of self-peptides to newly synthesized class II molecules. Ii chain expression did not restore the ability of transformants to process and present soluble protein Ag. A striking result was the finding that cells showing a defect in the exogenous class II presentation pathway were capable of functioning as stimulators when they expressed intracellular secreted but not signal-less V-CH3b Ag. Thus, so-called professional APC that can capture and process exogenous protein Ag may express a specialized set of proteins not required for the presentation of self-peptides.  相似文献   

17.
Despite the tremendous plasticity of the TCR repertoire, T cells recognize a limited number of antigenic sites (frequently a single site, or immunodominant epitope) on a complex protein Ag. Current models suggest that the immunodominant epitope of a complex protein is the processed peptide that binds to the MHC molecule with the highest affinity. Conversely, the inability of the T cell population to recognize a specific epitope, termed a "hole" in the repertoire, can prevent the immunodominance of a peptide despite efficient processing and MHC binding of the peptide. The role of specific TCR alpha- or beta-chains in determining MHC restriction and recognizing specific epitopes is complex and incompletely understood. To evaluate the contribution of each TCR chain to the functional diversity of the T cell repertoire, we investigated in vivo the T cell response to phage lambda-repressor protein in transgenic mice expressing a single rearranged beta-chain gene (C57L beta mice) in association with the complete germline alpha-chain repertoire. Our results demonstrate that expression of the TCR beta-chain transgene alters the immunodominant epitope recognized by T cells. However, after immunization with the appropriate peptide the transgenic mice can also respond to the nonimmunodominant epitope; thus, the expression of the TCR beta-chain transgene does not create a hole in the repertoire. These data indicate that the primary site, or immunodominant epitope, of an Ag recognized by T cells can be altered by the preimmune TCR repertoire independent of antigen processing and MHC affinity.  相似文献   

18.
Substantial progress has been made in understanding Ag presentation to T cells; however, relatively little is known about the location and frequency of cells presenting viral Ags during a viral infection. Here, we took advantage of a highly sensitive system using lacZ-inducible T cell hybridomas to enumerate APCs during the course of respiratory Sendai virus infection in mice. Using lacZ-inducible T cell hybridomas specific for the immunodominant hemagglutinin-neuraminidase HN421-436/I-Ab and nucleoprotein NP324-332/Kb epitopes, we detected APCs in draining mediastinal lymph nodes (MLNs), in cervical lymph nodes, and also in the spleen. HN421-436/I-Ab- and NP324-332/Kb-presenting cells were readily detectable between days 3 and 9 postinfection, with more APCs present in the MLN than in the cervical lymph nodes. Interestingly, no infectious virus was detected in lymphoid tissue beyond day 6, suggesting that a depot of noninfectious viral Ag survives, in some form, for 2-3 days after viral clearance. Fractionation of the MLN demonstrated that APC frequency was enriched in dendritic cells and macrophages but depleted in the B cell population, suggesting that B cells do not form a large population of APCs during the primary response to this virus.  相似文献   

19.
Type B T cells recognize peptide provided exogenously but are ignorant of the same epitope derived from intracellular processing. In this study, we demonstrate the existence of type B T cells to an abundant autologous peptide derived from processing of the I-A(k) beta-chain. T cell hybridomas raised against this peptide fail to recognize syngeneic APC despite abundant presentation of the naturally processed epitope but react in a dose-dependent manner to exogenous peptide. Moreover, these hybridomas respond to Abeta(k) peptide extracted from the surface of I-A(k)-expressing APC. This peptide was isolated from B cell lines where it was found in high abundance; it was also present in lines lacking HLA-DM, but in considerably lower amounts. Therefore, type B T cells exist in the naive repertoire to abundant autologous peptides. We discuss the implications of these findings to the potential biological role of type B T cells in immune responses and autoimmune pathology.  相似文献   

20.
We studied the effects of the indirect pathway of allograft recognition using T cells from TCR transgenic Marilyn mice, which recognize the male Ag H-Y in an I-A(b)-restricted fashion. The T cells are not alloreactive to the H-2(k) haplotype, because they are not activated when adoptively transferred into recombinase-activating gene-2(-/-) common gamma-chain(-/-) double-mutant H-2(k) male or female mice. However, skin from H-2(k) males, but not from H-2(k) females, is acutely rejected by recombinase-activating gene-2(-/-) transgenic female recipients. In vitro, Marylin spleen cells primed by H-2(k) skin grafting proliferated and secreted both IL-4 and IFN-gamma in response to H-2(k) male stimulators. However, the removal of H-2(b) APC from the responding population abolished the response. Taken together, these results show that the indirect recognition that triggers rejection in this model is due to the recognition of H-Y Ag shed from H-2(k) male allograft and presented by the recipient's own I-A(b) APC to transgenic T cells. This study demonstrates unequivocally the capacity of naive CD4(+) T cells to promote the rejection of allografts through mechanisms that involve indirect destruction of grafted tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号