首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reverse-phase high-performance liquid chromatography (RP-HPLC) was used in a one-step procedure to purify and analyze several different major variable-surface glycoproteins (VSGs) from lysates of African trypanosomes. RP-HPLC was used to fractionate lysates of trypanosomes and the VSG localized to the major peak of the elution profile using a rabbit antiserum to the cross-reacting determinant of the VSG. Polyacrylamide gel electrophoresis of HPLC fractions showed that the purity of isolated VSGs was equivalent to or better than that attained using conventional purification procedures. The elution positions of purified VSGs from a variety of cloned trypanosomes were identical, indicating the presence of a common hydrophobic feature on the surface of these highly polymorphic antigens. Preliminary experiments have shown that purification of VSG from trypanosome lysates may be scaled up to preparative levels. The results show that RP-HPLC is a useful procedure for rapid preparation of highly purified trypanosome VSGs and that analysis of their various molecular forms will be facilitated by the application of HPLC methods.  相似文献   

2.
3.
In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.  相似文献   

4.
—The regulation of protein synthesis by ribosomes isolated from mouse brain tissue was studied using a cell-free polyphenylalanine synthesizing system. Polypeptide synthesis was followed by assaying translocation and analysing the reaction products by BD-cellulose chromatography. The brain ribosomal activity could be divided by these methods into two distinct steps : binding of aminoacyl-tRNA to the ribosome and active translocation leading to subsequent polyphenylalanine synthesis. In comparison to initial binding of aminoacyl-tRNA, translocation in the cell-free system increased the incorporation of labelled phenylalanine by 10-fold. An analysis of the reaction products clearly showed active ribosomal synthesis of oligophenylalanine from [3H]phe-tRNA. Ribosomes isolated from neonatal brain tissue were 2–4 times as active as those obtained from adult brain tissue in polypeptide synthesis. In addition, polypeptides synthesized on the more active ribosomes from neonates tended to be of greater chain length than those from adult. Therefore, the maturation-dependent decrease in ribosomal protein synthetic activity during neural development was shown to be directly associated with the ribosome particles.  相似文献   

5.
S Longacre  H Eisen 《The EMBO journal》1986,5(5):1057-1063
A rapid technique involving the S1 nuclease resistance of RNA:DNA duplexes has been used to screen four Trypanosoma equiperdum variant surface glycoprotein (VSG) genes for evidence of hybrid gene structure in their transcribed regions. The results suggest that VSGs appearing early in a chronic infection each have a complete co-linear basic copy (BC) of their expressed gene while VSGs appearing later in infection are particularly associated with BC genes which are recombined before being expressed. The intensities of the S1-protected bands from hybrid VSGs indicate that the basic and expression linked copies are present in equivalent gene dosages. In addition, studies are presented on the expression of two additional VSG genes in T. equiperdum, VSG 4 and VSG 78, which (i) show that the basic copies are not located on telomeres even though one (VSG 4) is expressed early in infection and (ii) emphasize the role of a predominant expression site in T. equiperdum while nevertheless confirming the presence of multiple expression sites.  相似文献   

6.
The surface of the African trypanosomes   总被引:3,自引:0,他引:3  
The African trypanosomes bear on the outside of their cell membrane a single 10-15 nm thick coat of a glycoprotein. This glycoprotein may differ in structure in the predominant populations of parasitemic waves found in relapsing infections. Variant Specific Glycoprotein (VSG) range in MW between 53,000-63,000 d and may have variable amounts of carbohydrate attached at one, two, or several loci. Such differences in carbohydrate content may account in part for their range in molecular size. Approximately 30 C-terminal residues demonstrate isotypy ; i.e. these regions fall into classes having similar amino acid sequence. Modest homology has been demonstrated in two VSGs of T. congolense arising in relapsing infections although comparison of many VSG show little or no obvious homology. More recently, lipid-associated forms of VSG have been described and it is believed that these forms may be transmembrane proteins. Different VSGs appear to have different amounts of the primary sequence which have alpha-helix-forming potential. In some VSG, in excess of 80% of the structure is helical as judged by both Chou-Fasman calculations and by circular dichroism. This raises the possibility that different VSG may have different folding patterns. The arrangement of VSG on the trypanosome surface probably places the basic amino acid-rich carbohydrate-bearing C-terminus of the polypeptide chain close to the membrane. There is some protein-protein association between VSGs for which (in T. evansi) the C-terminal tail is not required. The importance of VSG structure lies not only in the fact that the molecule mediates the phenomenon of antigenic variation but also in the recent observation that VSG may act on the cellular immune system to suppress the humoral immune responses of the host.  相似文献   

7.
The variant surface glycoproteins (VSGs) of Trypanosoma brucei are synthesized with a hydrophobic COOH-terminal peptide that is cleaved and replaced by a glycophospholipid, which anchors VSG to the surface membrane. The kinetics of VSG processing were studied by metabolic labeling with [35S]methionine and [3H]myristic acid. The COOH-terminal oligosaccharide-containing structure remaining after phospholipase removal of dimyristyl glycerol from membrane-form VSG could be detected serologically within 1 min of polypeptide synthesis in two T. brucei variants studied. Addition of the oligosaccharide-containing structure was resistant to tunicamycin. VSGs synthesized in the presence of tunicamycin displayed lower apparent molecular weights, consistent with the complete inhibition of N-glycosylation at one (variant 117), two (variant 221), or at least three (variant 118) internal asparagine sites. In most experiments, N-glycosylation appeared to occur during or immediately after polypeptide synthesis but in a few cases N-glycosylation was delayed or incomplete. In all cases, addition of the COOH-terminal oligosaccharide-containing structure occurred normally. In dual-labeling studies, cycloheximide caused rapid inhibition of both [35S]methionine and [3H]myristic acid incorporation, suggesting that myristic acid addition also occurs immediately after polypeptide synthesis. Our data suggest that the complex ethanolamine-glycosyl-dimyristylphosphatidylinositol structure of membrane-form VSG is added en bloc within 1 min of completion of the polypeptide.  相似文献   

8.
Trypanosome variant surface glycoproteins (VSGs) have a novel glycan-phosphatidylinositol membrane anchor, which is cleavable by a phosphatidylinositol-specific phospholipase C. A similar structure serves to anchor some membrane proteins in mammalian cells. Using kinetic and ultrastructural approaches, we have addressed the question of whether this structure directs the protein to the cell surface by a different pathway from the classical one described in other cell types for plasma membrane and secreted glycoproteins. By immunogold labeling on thin cryosections we were able to show that, intracellularly, VSG is associated with the rough endoplasmic reticulum, all Golgi cisternae, and tubulovesicular elements and flattened cisternae, which form a network in the area adjacent to the trans side of the Golgi apparatus. Our data suggest that, although the glycan-phosphatidylinositol anchor is added in the endoplasmic reticulum, VSG is nevertheless subsequently transported along the classical intracellular route for glycoproteins, and is delivered to the flagellar pocket, where it is integrated into the surface coat. Treatment of trypanosomes with 1 microM monensin had no effect on VSG transport, although dilation of the trans-Golgi stacks and lysosomes occurred immediately. Incubation of trypanosomes at 20 degrees C, a treatment that arrests intracellular transport from the trans-Golgi region to the cell surface in mammalian cells, caused the accumulation of VSG molecules in structures of the trans-Golgi network, and retarded the incorporation of newly synthesized VSG into the surface coat.  相似文献   

9.
The African trypanosomes bear on the outside of their cell membrane a single 10–15 nm thick coat of a glycoprotein. This glycoprotein may differ in structure in the predominant populations of parasitemic waves found in relapsing infections. Variant Specific Glycoprotein (VSG) range in MW between 53,000–63,000 d and may have variable amounts of carbohydrate attached at one, two, or several loci. Such differences in carbohydrate content may account in part for their range in molecular size. Approximately 30 C-terminal residues demonstrate isotypy; i.e. these regions fall into classes having similar amino acid sequence. Modest homology has been demonstrated in two VSGs of T. congolense arising in relapsing infections although comparison of many VSG show little or no obvious homology. More recently, lipid-associated forms of VSG have been described and it is believed that these forms may be transmembrane proteins. Different VSGs appear to have different amounts of the primary sequence which have alpha-helix-forming potential. In some VSG, in excess of 80% of the structure is helical as judged by both Chou-Fasman calculations and by circular dichroism. This raises the possibility that different VSG may have different folding patterns. The arrangement of VSG on the trypanosome surface probably places the basic amino acid-rich carbohydrate-bearing C-terminus of the polypeptide chain close to the membrane. There is some protein-protein association between VSGs for which (in T. evansi) the C-terminal tail is not required. The importance of VSG structure lies not only in the fact that the molecule mediates the phenomenon of antigenic variation but also in the recent observation that VSG may act on the cellular immune system to suppress the humoral immune responses of the host.  相似文献   

10.
11.
Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins.  相似文献   

12.
At present, all available diagnostic antibody detection tests for Trypanosoma brucei gambiense human African trypanosomiasis are based on predominant variant surface glycoproteins (VSGs), such as VSG LiTat 1.5. During investigations aiming at replacement of the native VSGs by recombinant proteins or synthetic peptides, the sequence of VSG LiTat 1.5 was derived from cDNA and direct N-terminal amino acid sequencing. Characterization of the VSG based on cysteine distribution in the amino acid sequence revealed an unusual cysteine pattern identical to that of VSG Kinu 1 of T. b. brucei. Even though both VSGs lack the third of four conserved cysteines typical for type A N-terminal domains, they can be classified as type A.  相似文献   

13.
A rat liver cytosol was used to study protein synthesis per se and also to study import of proteins into mitochondria since rat liver cytosol represents an environment closer to that of liver mitochondria than the generally used reticulocytes lysates. Two ATP-regenerating systems were compared. The creatine phosphate/creatine kinase yields higher protein synthesis than the phosphoenol pyruvate/pyruvate kinase system. Hemin, necessary to maintain synthesis by reticulocyte lysates, does not affect the rat liver cytosol. The level of protein synthesis obtained with this cell-free system is comparable to other eukaryotic systems described recently and to the expected value for "in vivo" conditions. Isolated mitochondria incorporated, under our standard conditions, newly synthesized proteins linearly up to 30 min, it ceases when a component(s) in the cytosol had been depleted; addition of freshly translated cytosol restores the import. The bulk of imported proteins are retained in mitoplasts or in mitochondria after treatment with trypsin. The cytosol system will be useful to study questions such as regulation of liver mRNA translation and mitochondrial protein turnover.  相似文献   

14.
Trypanosome variant surface glycoproteins (VSGs) exemplify a class of eukaryotic cell-surface glycoproteins that rely on a covalently attached lipid, glycosyl-phosphatidylinositol, for membrane attachment. The glycolipid anchor is acquired soon after translation of the polypeptide, apparently by replacement of a short sequence of carboxyl-terminal amino acids with a precursor glycolipid. A candidate glycolipid precursor (P2) and a related glycolipid (P3) have been identified in polar lipid extracts from trypanosomes. Both lipids are glycosylphosphatidylinositol species containing a Man3GlcN core glycan indistinguishable from the backbone sequence of the VSG glycolipid anchor. We and others have recently described the cell-free synthesis of P2, P3, and a spectrum of putative biosynthetic lipid intermediates using crude preparations of trypanosome membranes. In this paper we use these preparations to show that all three mannose residues in the glycosyl-phosphatidylinositol glycan are derived from dolichol-P-mannose.  相似文献   

15.
Amino acid incorporation in a cell-free system derived from rat liver has previously been found to be inhibited by GSSeSG (selenodiglutathione). In the present experiments the effect of GSSeSG on protein synthesis in 3T3-f cells, on growth and protein synthesis in Escherichia coli, and on amino acid incorporation in a cell-free system derived from E. coli, was studied. GSSeSG inhibits the incorporation of [3H]leucine into protein by 3T3-f cells. This inhibition cannot be reversed by removing GSSeSG and is correlated with the uptake of GSSeSG. Sodium selenite (Na2SeO3) and oxidized glutathione had no inhibitory effect in this system. [3H]Uridine or [3H]thymidine incorporation into RNA or DNA was not inhibited, indicating that the primary action of GSSeSG was on protein synthesis. GSSeSG did not influence the growth of E. coli in a synthetic medium, although enhanced amino acid incorporation was observed. In the cell-free system derived from E. coli, amino acid incorporation was not changed by GSSeSG, indicating that elongation factor G, in contrast to elongation factor 2 of mammalian cell systems, is not blocked by GSSeSG.  相似文献   

16.
Cell-free extracts from the HTl clone of cultured Chinese hamster lung cells efficiently promote the incorporation of proline into newly synthesized material, 50% of which is digestible to small peptides by highly purified bacterial collagenase. The synthesis of the these products occurs under optimal protein synthesis conditions and is inhibited by puromycin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell-free synthesized material reveals a major collagenase sensitive peak (20% of the total product) at mol wt 165 000 which is reflected by a collagenase sensitive material of similar size in the culture medium. Two additional collagenase digestible species (mol wt 95000 and 65000), each having a corresponding secreted product, are generated by the cell-free system. These results are consistent with the concept that procollagen is formed by the association of three individually translated pro alphachains. The data further constitute the report of a highly active homologous cell-free system capable of pro alpha chain biosynthesis derived from a cultured cell line that is a practical source for pro alphachain biosynthesis derived from a cultured cell line that is a practical source for proalpha chain mRNA as well as a unique system for elucidating regulatory mechanisms involved in collagen biosynthesis.  相似文献   

17.
To elucidate the response to oxidative stress in eukaryotic cells, the effect of an oxidized nucleotide, 8-oxo-2′-deoxyguanosine 5′-triphosphate (8-oxo-dGTP), generated from dGTP with an active oxygen, on DNA synthesis was studied using a cell-free DNA replication system derived from Xenopus egg lysates with a single-stranded DNA template. Amounts of newly synthesized DNA were reduced according to the increasing concentration of 8-oxo-dGTP. Pulse labeling analysis revealed that 8-oxo-dGTP could delay DNA synthesis by reducing the rate of chain elongation. This delay was recovered by addition of a protein kinase inhibitor, staurosporine or bisindolylmaleimide I. These results indicate that a staurosporine- or bisindolylmaleimide I-sensitive protein kinase, such as a protein kinase C family member, may contribute to the delay of DNA synthesis by 8-oxo-dGTP. UV-irradiated single-stranded DNA also caused a delay of DNA synthesis on the undamaged template in the lysates. However, this delay was not recovered by staurosporine or bisindolylmaleimide I. Therefore, the mechanism of delay of DNA synthesis by 8-oxo-dGTP may be different from that by UV lesions. This is the first report that demonstrates an effect of an oxidized nucleotide on DNA replication in eukaryotes.  相似文献   

18.
We have previously demonstrated that glycosylphosphatidylinositol (GPI) anchors strongly influence protein trafficking in the procyclic insect stage of Trypanosoma brucei (M. A. McDowell, D. A. Ransom, and J. D. Bangs, Biochem. J. 335:681-689, 1998), where GPI-minus variant surface glycoprotein (VSG) reporters have greatly reduced rates of endoplasmic reticulum (ER) exit but are ultimately secreted. We now demonstrate that GPI-dependent trafficking also occurs in pathogenic bloodstream trypanosomes. However, unlike in procyclic trypanosomes, truncated VSGs lacking C-terminal GPI-addition signals are not secreted but are mistargeted to the lysosome and degraded. Failure to export these reporters is not due to a deficiency in secretion of these cells since the N-terminal ATPase domain of the endogenous ER protein BiP is efficiently secreted from transgenic cell lines. Velocity sedimentation experiments indicate that GPI-minus VSG dimerizes similarly to wild-type VSG, suggesting that degradation is not due to ER quality control mechanisms. However, GPI-minus VSGs are fully protected from degradation by the cysteine protease inhibitor FMK024, a potent inhibitor of the major lysosomal protease trypanopain. Immunofluorescence of cells incubated with FMK024 demonstrates that GPI-minus VSG colocalizes with p67, a lysosomal marker. These data suggest that in the absence of a GPI anchor, VSG is mistargeted to the lysosome and subsequently degraded. Our findings indicate that GPI-dependent transport is a general feature of secretory trafficking in both stages of the life cycle. A working model is proposed in which GPI valence regulates progression in the secretory pathway of bloodstream stage trypanosomes.  相似文献   

19.
Translationally active cell-free systems from gills of the Antarctic scallop Adamussium colbecki and the European scallop Aequipecten opercularis were developed, characterised, and optimised for an analysis of translational capacity. The aim was to determine the energetic cost of protein synthesis in the in vitro cell-free system by directly measuring the required energy equivalents in the lysates. Protein synthesis rate in assays conducted with lysates of A. colbecki (1.029+/-0.061 micromol Phe min(-1) at 15 degrees C; Phe=phenylalanine) were higher compared with lysates of A. opercularis (0.087+/-0.013 micromol Phe min(-1) at 15 degrees C and 0.156+/-0.023 micromol Phe min(-1) at 25 degrees C). This can in part be attributed to the naturally occurring higher RNA content in lysates of A. colbecki (0.883+/-0.037 mg RNA mL(-1) lysate) compared with A. opercularis (0.468+/-0.013 mg RNA mL(-1) lysate). There was no significant difference in the energetic costs of protein synthesis in cell-free systems of gill lysates of the cold stenothermal A. colbecki with 4.3+/-0.7 energy equivalents per peptide bond formed and the eurythermal A. opercularis with 5.6+/-0.6 energy equivalents, indicating that there are no differences in the efficiency of the translation machinery. The energetic costs specified for protein synthesis correspond with the generally accepted theoretical value of four energy equivalents per peptide bond formed, especially in gill lysates of A. colbecki, whereas the value for gill lysates of A. opercularis was slightly higher.  相似文献   

20.
A wide variety of eukaryotic membrane proteins are anchored to the outside of cells by covalent linkage to glycosyl phosphatidylinositol (GPI). One of the best characterized examples is the variant surface glycoprotein (VSG) of the protozoan parasite, Trypanosoma brucei. The structure of the GPI precursor is ethanolamine-PO4-Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcNH2-PI; the phosphoethanolamine moiety forms an amide linkage to the VSG polypeptide alpha-COOH group during its attachment to protein. Here we report that the serine esterase inhibitor, phenylmethanesulphonyl fluoride (PMSF), inhibits phosphoethanolamine incorporation into the GPI precursor resulting in the accumulation of a Man3GlcNH2-PI intermediate. PMSF exerts this effect both in living trypanosomes and in a trypanosome-derived cell-free system. This is the first report of an inhibitor which affects GPI biosynthesis but not N-glycosylation. A model of the mechanism of phosphoethanolamine incorporation into the GPI precursor, based on the known properties of PMSF, is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号