首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The possibility of quantitative determination of protein HU in E. coli cell lysates was demonstrated, using enzyme immunoassay with monospecific polyclonal antibodies against HU and homogeneous protein HU. The protein HU/DNA ratio in two cultures of E. coli with different generation periods was found to be constant despite the differences in the levels of proteins HU and DNA. Protein HU was found to be represented by approximately 420.10(3) copies per fast growing. E. coli cell and by 320.10(3) copies per slowly growing cell. These amounts of the HU protein correspond to a ratio of one protein HU molecule per 44 +/- 8 base pairs of DNA and can provide for the nucleosome-like organization of approximately 30% of E. coli DNA length. The constant HU/DNA ratio which is similar to constant histones/DNA ratio provides additional evidence in favour of functional similarity of the HU E. coli DNA-binding protein to histones.  相似文献   

3.
4.
5.
The nucleoprotein complex formed on oriC, the Escherichia coli replication origin, is dynamic. During the cell cycle, high levels of the initiator DnaA and a bending protein, IHF, bind to oriC at the time of initiation of DNA replication, while binding of Fis, another bending protein, is reduced. In order to probe the structure of nucleoprotein complexes at oriC in more detail, we have developed an in situ footprinting method, termed drunken-cell footprinting, that allows enzymatic DNA modifying reagents access to intracellular nucleoprotein complexes in E.coli, after a brief exposure to ethanol. With this method, we observed in situ binding of Fis to oriC in exponentially growing cells, and binding of IHF to oriC in stationary cells, using DNase I and Bst NI endonuclease, respectively. Increased binding of DnaA to oriC in stationary phase was also noted. Because binding of DnaA and IHF results in unwinding of oriC in vitro, P1 endonuclease was used to probe for intracellular unwinding of oriC. P1 cleavage sites, localized within the 13mer unwinding region of oriC ', were dramatically enhanced in stationary phase on wild-type origins, but not on mutant versions of oriC unable to unwind. These observations suggest that most oriC copies become unwound during stationary phase, forming an initiation-like nucleoprotein complex.  相似文献   

6.
7.
Using the gel retardation technique we have studied the protein-DNA complexes formed between HU--the major histone-like protein of Escherichia coli--and short DNA fragments. We show that several HU heterodimers bind DNA in a regularly spaced fashion with each heterodimer occupying about 9 base pairs. The alpha 2 and beta 2 HU homodimers form the same structure as the alpha beta heterodimer on double stranded DNA. However when compared to the heterodimer, they bind single stranded DNA with higher affinity. We also show that HU and the Integration Host Factor of E. coli (IHF) form different structures with the same DNA fragments. Moreover, HU seems to enhance the DNA-binding capacity of IHF to a DNA fragment which does not contain its consensus sequence.  相似文献   

8.
9.
We studied the transforming ability of the extracellular plasmid DNA released from a genetically engineered Escherichia coli pEGFP and the culturing conditions for the release of transforming DNA. The transforming ability was evaluated by transformation of competent cells with filtrates of E. coli pEGFP cultures. The number of transformants increased with time when E. coli pEGFP cells grew exponentially in rich medium, but not in stationary phase or when inoculated in freshwater. These results suggested that crude extracellular plasmid DNA had transforming ability and this transforming DNA was mainly released by actively growing bacteria.  相似文献   

10.
Escherichia coli RecF protein binds, but does not hydrolyze, ATP. To determine the role that ATP binding to RecF plays in RecF protein-mediated DNA binding, we have determined the interaction between RecF protein and single-stranded (ss)DNA, double-stranded (ds)DNA, and dsDNA containing ssDNA regions (gapped [g]DNA) either alone or in various combinations both in the presence and in the absence of adenosine (gamma-thio) triphosphate, gamma-S-ATP, a nonhydrolyzable ATP analog. Protein-DNA complexes were analyzed by electrophoresis on agarose gels and visualized by autoradiography. The type of protein-DNA complexes formed in the presence of gamma-S-ATP was different with each of the DNA substrates and from those formed in the absence of gamma-S-ATP. Competition experiments with various combinations of DNA substrates indicated that RecF protein preferentially bound gDNA in the presence of gamma-S-ATP, and the order of preference of binding was gDNA > dsDNA > ssDNA. Since gDNA has both ds- and ssDNA components, we suggest that the role for ATP in RecF protein-DNA interactions in vivo is to confer specificity of binding to dsDNA-ssDNA junctions, which is necessary for catalyzing DNA repair and recombination.  相似文献   

11.
Transcriptional regulation of the spo0F gene of Bacillus subtilis   总被引:17,自引:14,他引:3       下载免费PDF全文
  相似文献   

12.
The heterodimeric HU protein was isolated from Escherichia coli as one of the most abundant DNA binding proteins associated with the bacterial nucleoid. HUalphabeta is composed of two very homologous subunits, but HU can also be present in E. coli under its two homodimeric forms, HUalpha(2) and HUbeta(2). This protein is conserved either in its heterodimeric form or in one of its homodimeric forms in all bacteria, in plant chloroplasts and in some viruses. HU can participate, like the histones, in the maintenance of DNA supercoiling and in DNA condensation. This protein which does not recognize any specific sequence on double-stranded DNA, has been shown to bind specifically to cruciform DNA as does the eukaryotic HMG1 protein and to a series of structures which are found as intermediates of DNA repair, e.g., nick, gap, 3'overhang, etc. The strong binding of HU to these diverse DNA structures could explain, in part at least, its pleiotropic role in the bacterial cell. To understand all the facets of its interactions with nucleic acids, it was necessary to develop a procedure which allowed the purification of the three forms of HU under their native form and without the nuclease activity strongly associated with the protein. We describe here such a procedure as well as demonstrating that the three histidine-tagged HUs we have produced, have conserved the binding characteristics of native HUs. Interestingly, by two complementation tests, we show that the histidine-tagged HUs are fully active in vivo.  相似文献   

13.
DNA looping is important for gene repression and activation in Escherichia coli and is necessary for some kinds of gene regulation and recombination in eukaryotes. We are interested in sequence-nonspecific architectural DNA-binding proteins that alter the apparent flexibility of DNA by producing transient bends or kinks in DNA. The bacterial heat unstable (HU) and eukaryotic high-mobility group B (HMGB) proteins fall into this category. We have exploited a sensitive genetic assay of DNA looping in living E. coli cells to explore the extent to which HMGB proteins and derivatives can complement a DNA looping defect in E. coli lacking HU protein. Here, we show that derivatives of the yeast HMGB protein Nhp6A rescue DNA looping in E. coli lacking HU, in some cases facilitating looping to a greater extent than is observed in E. coli expressing normal levels of HU protein. Nhp6A-induced changes in the DNA length-dependence of repression efficiency suggest that Nhp6A alters DNA twist in vivo. In contrast, human HMGB2-box A derivatives did not rescue looping.  相似文献   

14.
Skoko D  Wong B  Johnson RC  Marko JF 《Biochemistry》2004,43(43):13867-13874
The mechanical response generated by binding of the nonspecific DNA-bending proteins HMGB1, NHP6A, and HU to single tethered 48.5 kb lambda-DNA molecules is investigated using DNA micromanipulation. As protein concentration is increased, the force needed to extend the DNA molecule increases, due to its compaction by protein-generated bending. Most significantly, we find that for each of HMGB1, NHP6A, and HU there is a well-defined protein concentration, not far above the binding threshold, above which the proteins do not spontaneously dissociate. In this regime, the amount of protein bound to the DNA, as assayed by the degree to which the DNA is compacted, is unperturbed either by replacing the surrounding protein solution with protein-free buffer or by straightening of the molecule by applied force. Thus, the stability of the protein-DNA complexes formed is dependent on the protein concentration during the binding. HU is distinguished by a switch to a DNA-stiffening function at the protein concentration where the formation of highly stable complexes occurs. Finally, introduction of competitor DNA fragments into the surrounding solution disassembles the stable DNA complexes with HMGB1, NHP6A, and HU within seconds. Since spontaneous dissociation of protein does not occur on a time scale of hours, we conclude that this rapid protein exchange in the presence of competitor DNA must occur only via "direct" DNA-DNA contact. We therefore observe that protein transport along DNA by direct transfers occurs even for proteins such as NHP6A and HU that have only one DNA-binding domain.  相似文献   

15.
The β recombinase is unable to mediate in vitro DNA recombination between two directly oriented recombination sites unless a bacterial chromatin-associated protein ( Bacillus subtilis Hbsu or Eschrichia coli HU) is provided. By electron microscopy, we show that the role of Hbsu is to help in joining the recombination sites to form a stable synaptic complex. Some evidence supports the fact that Hbsu works by recognizing and stabilizing a DNA structure at the recombination site, rather than by serving as a bridge between β recombinase dimers through a protein-protein interaction. We show that the mammalian HMG1 protein, which shares neither sequence nor structural homology with Hbsu, can also stimulate β-mediated recombination. These chromatin-associated proteins share the property of binding to DNA in a relatively non-specific fashion, bending it, and having a marked preference for altered DNA structures. Hbsu, HU or HMG1 proteins probably bind specifically at the crossing-over region, since at limiting protein-DNA molar ratios they could not be outcompeted by an excess of a DNA lacking the crossing over site. Distamycin, a minor groove binder that induces local distortions in DNA, did not affect the binding of β protein to DNA, but inhibited the formation of the synaptic complex.  相似文献   

16.
The histone-like protein HU from Escherichia coli is involved in DNA compaction and in processes such as DNA repair and recombination. Its participation in these events is reflected in its ability to bend DNA and in its preferred binding to DNA junctions and DNA with single-strand breaks. Deinococcus radiodurans is unique in its ability to reconstitute its genome from double strand breaks incurred after exposure to ionizing radiation. Using electrophoretic mobility shift assays (EMSA), we show that D.radiodurans HU (DrHU) binds preferentially only to DNA junctions, with half-maximal saturation of 18 nM. In distinct contrast to E.coli HU, DrHU does not exhibit a marked preference for DNA with nicks or gaps compared to perfect duplex DNA, nor is it able to mediate circularization of linear duplex DNA. These unexpected properties identify DrHU as the first member of the HU protein family not to serve an architectural role and point to its potential participation in DNA recombination events. Our data also point to a mechanism whereby differential target site selection by HU proteins is achieved and suggest that the substrate specificity of HU proteins should be expected to vary as a consequence of their individual capacity for inducing the required DNA bend.  相似文献   

17.
18.
19.
20.
The heterodimeric HU protein, one of the most abundant DNA binding proteins, plays a pleiotropic role in bacteria. Among others, HU was shown to contribute to the maintenance of DNA superhelical density in Escherichia coli. By its properties HU shares some traits with histones and HMG proteins. More recently, its specific binding to DNA recombination and repair intermediates suggests that HU should be considered as a DNA damage sensor. For all these reasons, it will be of interest to follow the localization of HU within the living bacterial cells. To this end, we constructed HU-GFP fusion proteins and compared by microscopy the GFP green fluorescence with images of the nucleoid after DAPI staining. We show that DAPI and HU-GFP colocalize on the E. coli nucleoid. HU, therefore, can be considered as a natural tracer of DNA in the living bacterial cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号