首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The presence of class II mRNA was determined following stimulation of macrophages from Bcgr and Bcgs mice with rIFN-gamma. Despite the continuous expression of surface I-A glycoprotein by macrophages from Bcgr mice, class II mRNA was no longer present. The transient expression of I-A by macrophages from Bcgs mice, however, was accompanied by the disappearance of class II mRNA from the cells. Restimulation of macrophages from Bcgs mice, with rIFN-gamma resulted in the reappearance of class II mRNA and surface I-A expression. The reappearance of class II mRNA and the surface expression of I-A glycoprotein was inhibited by PGE2. These results indicate that differences in I-A expression by macrophages from Bcgr and Bcgs are not at the level of class II gene expression.  相似文献   

6.
7.
Macrophages are activated by a variety of microbial and cytokine stimuli. One feature of activation is the induction of class II Ag (Ia) on the cell surface. To understand the intracellular events that occur during activation, we investigated various agents with intracellular activities, and examined their effects on the induction of Ia. We first noted that several agents that activate protein kinase C (PKC) induced Ia, and that several inhibitors of PKC inhibited Ia induction by IFN-gamma. To directly test whether PKC induced Ia, we microinjected normal peritoneal macrophages with this enzyme and other intracellular mediators, then examined Ia expression. We observed that injection of PKC itself, or of other intracellular proteins thought to participate in the PKC pathway (Ras or phospholipase C gamma) strongly induced Ia expression. The Ia-inducing activity of transforming Ras protein was blocked by kinase inhibitor treatment of cells, suggesting that Ras signal transduction requires kinase activity. On the other hand, components of the protein kinase A pathway (phospholipase A2 and protein kinase A itself) did not induce Ia. Thus, the PKC pathway can control expression of macrophage surface Ia, possibly by regulating the genes of the MHC, and may play many other roles in the activation of macrophages.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Astrocytes can be induced by interferon-gamma (IFN-gamma) to express class II major histocompatibility complex (MHC) antigens. This study was undertaken to elucidate the intracellular signaling pathways involved in IFN-gamma induction of class II MHC. We examined the effects of Na+/H+ antiporter and protein kinase C (PKC) inhibitors on class II expression and Na+ influx in astrocytes. We found that amiloride and ethyl isopropylamiloride, inhibitors of Na+/H+ exchange, blocked IFN-gamma-induced class II gene expression. IFN-gamma stimulated Na+ influx, and this increased influx was inhibited by amiloride. Treatment of astrocytes with the PKC inhibitor H7 also blocked the increase in Na+ uptake induced by IFN-gamma, indicating that IFN-gamma-induced PKC activation is required for subsequent Na+ influx. IFN-gamma treatment produced an increase of total PKC activity, which was associated with a rapid translocation of PKC activity from cytosolic to particulate fraction. H7 and another PKC inhibitor, staurosporine, inhibited IFN-gamma-induced class II gene expression. However, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate, a potent PKC activator, did not affect class II expression. Taken together, our data indicate that both IFN-gamma-induced PKC activation and Na+ influx are required for class II MHC expression in astrocytes but that activation of PKC alone is not sufficient for ultimate expression of this gene.  相似文献   

15.
16.
17.
Colony stimulating factor-1 (CSF-1) stimulates DNA synthesis in quiescent murine bone marrow-derived macrophages (BMM). CSF-1 action has been shown to involve activation of the CSF-1 receptor kinase. The protein kinase C activator, 12-O-tetradecanoylphorbol 13-acetate (PMA), is itself weakly mitogenic and synergises with CSF-1 for stimulation of BMM DNA synthesis suggesting a possible role for protein kinase C in the stimulation of BMM DNA synthesis. In this report we show that several agents which raise intracellular cAMP (8-bromoadenosine 3':5'-cyclic monophosphate, 3-isobutyl-1-methylxanthine, cholera toxin, and prostaglandin E2) reversibly inhibit DNA synthesis in BMM induced by CSF-1, granulocyte macrophage-colony stimulating factor, interleukin-3, and PMA. The suppressive action of cAMP elevation on the proliferative response to CSF-1 can be manifested even late in the G1 phase of the cell cycle. Several CSF-1-stimulated earlier responses, viz. protein synthesis, Na+/H+ exchange, Na+,K(+)-ATPase and c-myc-mRNA expression, were not inhibited thus showing a striking difference from some other cellular systems involving growth factor-mediated responses. c-fos-mRNA levels were raised and stabilized by the cAMP-elevating agents, and this modulation was not altered by CSF-1. Thus, the signaling pathways in the macrophages involving tyrosine kinase and protein kinase C activation are associated with increased proliferation while those involving elevation of cAMP (and presumably activation of cAMP-dependent protein kinases) appear to have an inhibitory effect.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号