首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A selenium-containing nucleoside, 5-methylaminomethyl-2-selenouridine (mnm5se2U), is present in lysine- and glutamate-isoaccepting tRNA species of Escherichia coli. The synthesis of mnm5se2U is optimum (4 mol/100 mol tRNA) when selenium is present at about 1 microM concentration and is neither decreased by a high (8 mM) level of sulfur in the medium nor increased by excessive (10 or 100 microM) levels of selenium. Lysine- and glutamate-isoaccepting tRNA species that contain 5-methylaminomethyl-2-thiouridine (mnm5s2U) coexist with the seleno-tRNAs in E. coli cells and a reciprocal relationship between the mnm5se2U- and the mnm5s2U-containing species is maintained under a variety of growth conditions. The complete 5-methylaminomethyl side chain is not a prerequisite for introduction of selenium at the 2-position. In E. coli mutants deficient in the ability to synthesize the 5-methylaminomethyl substituent, both the 2-thiouridine and the corresponding 2-selenouridine derivatives of intermediate forms are accumulated. Broken cell preparations of E. coli synthesize mnm5se2U in tRNAs by an ATP-dependent process that appears to involve the replacement of sulfur in mnm5s2U with selenium.  相似文献   

2.
In response to low (approximately 1 microM) levels of selenium, Escherichia coli synthesizes tRNA(Glu) and tRNA(Lys) species that contain 5-methylaminomethyl-2-selenouridine (mnm5Se2U) instead of 5-methylaminomethyl-2-thiouridine (mnm5S2U). Purified glutamate- and lysine-accepting tRNAs containing either mnm5Se2U (tRNA(SeGlu), tRNA(SeLys] or mnm5S2U (tRNA(SGlu), tRNA(SLys] were prepared by RPC-5 reversed-phase chromatography, affinity chromatography using anti-AMP antibodies and DEAE-5PW ion-exchange HPLC. Since mnm5Se2U, like mnm5S2U, appears to occupy the wobble position of the anticodon, the recognition of glutamate codons (GAA and GAG) and lysine codons (AAA and AAG) was studied. While tRNA(SGlu) greatly preferred GAA over GAG, tRNA(SeGlu) showed less preference. Similarly, tRNA(SGlu) preferred AAA over AAG, while tRNA(SeLys) did not. In a wheat germ extract--rabbit globin mRNA translation system, incorporation of lysine and glutamate into protein was generally greater when added as aminoacylated tRNA(Se) than as aminoacylated tRNA(S). In globin mRNA the glutamate and lysine codons GAG and AAG are more numerous than GAA and AAA, thus a more efficient translation of globin message with tRNA(Se) might be expected because of facilitated recognition of codons ending in G.  相似文献   

3.
Su D  Ojo TT  Söll D  Hohn MJ 《FEBS letters》2012,586(6):717-721
5-Methylaminomethyl-2-selenouridine (mnm(5)Se(2)U) is found in the first position of the anticodon in certain tRNAs from bacteria, archaea and eukaryotes. This selenonucleoside is formed in Escherichia coli from the corresponding thionucleoside mnm(5)S(2)U by the monomeric enzyme YbbB. This nucleoside is present in the tRNA of Methanococcales, yet the corresponding 2-selenouridine synthase is unknown in archaea and eukaryotes. Here we report that a bipartite ybbB ortholog is present in all members of the Methanococcales. Gene deletions in Methanococcus maripaludis and in vitro activity assays confirm that the two proteins act in trans to form in tRNA a selenonucleoside, presumably mnm(5)Se(2)U. Phylogenetic data suggest a primal origin of seleno-modified tRNAs.  相似文献   

4.
Selenium (Se) can provide unique biochemical and biological functions, and properties to macromolecules, including protein and RNA. Although Se has not yet been found in DNA, identification of the presence of Se in natural tRNAs has led to discovery of the naturally occurring 2-selenouridine and 5-[(methylamino)methyl]-2-selenouridine (mnm(5)se(2)U). The Se-atoms at C(2) of the modified uridines are introduced by 2-selenouridine synthase via displacement of the S-atoms in the corresponding 2-thiouridine nucleotides of the tRNAs, and selenophosphate is used as the Se donor. The research indicated that mnm(5)se(2)U is located at the first or wobble position of the anticodons in several bacterial tRNAs, including tRNA(Lys), tRNA(Glu), and tRNA(Gln). The 2-seleno functionality on this modified nucleotide probably improves the translation accuracy and/or efficiency. These observations in vivo suggest that the presence of Se can provide natural RNAs with useful properties to better function and survival. To further investigate the biochemical and structural properties of Se-derivatized nucleic acids (SeNA), we have pioneered chemical and enzymatic synthesis of Se-derivatized nucleic acids, and introduced Se into both RNA and DNA at a variety of positions by atom-specific replacement of oxygen. This review outlines the recent advancements in chemical and biochemical syntheses, and studies of SeNAs, and their potential applications in structural and functional investigation of nucleic acids and their protein complexes.  相似文献   

5.
The tRNA(5-methylaminomethyl-2-thiouridine)-methyltransferase, which is involved in the biosynthesis of the modified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) present in the wobble position of some tRNAs, was purified close to homogeneity (95% purity). The molecular mass of the enzyme is 79,000 daltons. The enzyme activity has a pH optimum of 8.0-8.5, is inhibited by magnesium ions, and stimulated by ammonium ions. Two different intermediates in the biosynthesis of mnm5s2U34 are present in tRNA from the mutants trmC1 and trmC2. Unexpectedly, the product present in tRNA from trmC1 cells was identified by mass spectrometric and chromatographic analyses as 5-carboxymethylaminomethyl-2-thiouridine (cmnm5s2U), i.e. a more complex derivative than the final product mnm5s2U. The product present in tRNA from trmC2 cells was identified as 5-aminomethyl-2-thiouridine (nm5s2U). In the presence of S-adenosylmethionine the most purified enzyme fraction converts both cmnm5s2U34 and nm5s2U34 into mnm5s2U34. In the absence of S-adenosylmethionine, however, cmnm5s2U34 is converted into nm5s2U by this enzyme fraction. We conclude that the purified polypeptide has two enzymatic activities; one actually demodifies cmnm5s2U to nm5s2U and the other catalyzes the transfer of a methyl group from S-adenosylmethionine to nm5s2U, thus forming mnm5s2U. The sequential order of the biosynthesis of mnm5s2U34 is suggested to be: (Formula: see text). The molecular activity of the methyltransferase activity (nm5s2U34----mnm5s2U34) is 74 min-1, and the steady state concentration of the enzyme is only 78 molecules/genome equivalent in cells growing at a specific growth rate of 1.0/h.  相似文献   

6.
The wobble bases of bacterial tRNAs responsible for NNR codons are modified to 5-methylaminomethyl-2-thiouridine (mnm5s2U). 2-thio modification of mnm5s2U is required for accurate decoding and essential for normal cell growth. We identified five genes yhhP, yheL, yheM, yheN, and yccK (named tusA, tusB, tusC, tusD, and tusE, respectively) that are essential for 2-thiouridylation of mnm5s2U by a systematic genome-wide screen ("ribonucleome analysis"). Efficient 2-thiouridine formation in vitro was reconstituted with recombinant TusA, a TusBCD complex, TusE, and previously identified IscS and MnmA. The desulfurase activity of IscS is stimulated by TusA binding. IscS transfers the persulfide sulfur to TusA. TusE binds TusBCD complex and stimulates sulfur transfer from TusA to TusD. TusE also interacts with an MnmA-tRNA complex. This study revealed that 2-thiouridine formation proceeds through a complex sulfur-relay system composed of multiple sulfur mediators that select and facilitate specific sulfur flow to 2-thiouridine from various pathways of sulfur trafficking.  相似文献   

7.
The wobble nucleoside 5-methylaminomethyl-2-thio-uridine (mnm5s2U) is present in bacterial tRNAs specific for Lys and Glu and 5-carboxymethylaminomethyl-2-thio-uridine (cmnm5s2U) in tRNA specific for Gln. The sulfur of (c)mnm5s2U may be exchanged by selenium (Se)–a reaction catalyzed by the selenophosphate-dependent tRNA 2-selenouridine synthase encoded by the mnmH (ybbB, selU, sufY) gene. The MnmH protein has a rhodanese domain containing one catalytic Cys (C97) and a P-loop domain containing a Walker A motif, which is a potential nucleotide binding site. We have earlier isolated a mutant of Salmonella enterica, serovar Typhimurium with an alteration in the rhodanese domain of the MnmH protein (G67E) mediating the formation of modified nucleosides having a geranyl (ge)-group (C10H17-fragment) attached to the s2 group of mnm5s2U and of cmnm5s2U in tRNA. To further characterize the structural requirements to increase the geranylation activity, we here report the analysis of 39 independently isolated mutants catalyzing the formation of mnm5ges2U. All these mutants have amino acid substitutions in the rhodanese domain demonstrating that this domain is pivotal to increase the geranylation activity. The wild type form of MnmH+ also possesses geranyltransferase activity in vitro although only a small amount of the geranyl derivatives of (c)mnm5s2U is detected in vivo. The selenation activity in vivo has an absolute requirement for the catalytic Cys97 in the rhodanese domain whereas the geranylation activity does not. Clearly, MnmH has two distinct enzymatic activities for which the rhodanese domain is pivotal. An intact Walker motif in the P-loop domain is required for the geranylation activity implying that it is the binding site for geranylpyrophosphate (GePP), which is the donor molecule in vitro in the geranyltransfer reaction. Purified MnmH from wild type and from the MnmH(G67E) mutant have bound tRNA, which is enriched with geranylated tRNA. This in conjunction with earlier published data, suggests that this bound geranylated tRNA may be an intermediate in the selenation of the tRNA.  相似文献   

8.
Selenium is a constituent in Escherichia coli of the anaerobic enzyme formate dehydrogenase in the form of selenocysteine. Selenium is also present in the tRNA of E. coli in the modified base 5-methylaminomethyl-2-selenouracil (mnm5Se2U). The pathways of bacterial selenium metabolism are largely uncharacterized, and it is unclear whether nonspecific reactions in the sulfur metabolic pathways may be involved. We demonstrated that sulfur metabolic pathway mutants retain a wild-type pattern of selenium incorporation, indicating that selenite (SeO32-) is metabolized entirely via selenium-specific pathways. To investigate the function of mnm5Se2U, we isolated a mutant which is unable to incorporate selenium into tRNA. This strain was obtained by isolating mutants lacking formate dehydrogenase activity and then screening for the inability to metabolize selenium. This phenotype is the result of a recessive mutation which appears to map in the general region of 21 min on the Salmonella typhimurium chromosome. A mutation in this gene, selA, thus has a pleiotropic effect of eliminating selenium incorporation into both protein and tRNA. The selA mutant appears to be blocked in a step of selenium metabolism after reduction, such as in the actual selenium insertion process. We showed that the absence of selenium incorporation into suppressor tRNA reduces the efficiency of suppression of nonsense codons in certain contexts and when wobble base pairing is required. Thus, one function of mnm5Se2U in tRNA may be in codon-anticodon interactions.  相似文献   

9.
Deficiency of a modified nucleoside in tRNA often mediates suppression of +1 frameshift mutations. In Salmonella enterica serovar Typhimurium strain TR970 (hisC3737), which requires histidine for growth, a potential +1 frameshifting site, CCC-CAA-UAA, exists within the frameshifting window created by insertion of a C in the hisC gene. This site may be suppressed by peptidyl-tRNAProcmo5UGG (cmo(5)U is uridine-5-oxyacetic acid), making a frameshift when decoding the near-cognate codon CCC, provided that a pause occurs by, e.g., a slow entry of the tRNAGlnmnm5s2UUG (mnm(5)s(2)U is 5-methylaminomethyl-2-thiouridine) to the CAA codon located in the A site. We selected mutants of strain TR970 that were able to grow without histidine, and one such mutant (iscS51) was shown to have an amino acid substitution in the L-cysteine desulfurase IscS. Moreover, the levels of all five thiolated nucleosides 2-thiocytidine, mnm(5)s(2)U, 5-carboxymethylaminomethyl-2-thiouridine, 4-thiouridine, and N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine present in the tRNA of S. enterica were reduced in the iscS51 mutant. In logarithmically growing cells of Escherichia coli, a deletion of the iscS gene resulted in nondetectable levels of all thiolated nucleosides in tRNA except N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine, which was present at only 1.6% of the wild-type level. After prolonged incubation of cells in stationary phase, a 20% level of 2-thiocytidine and a 2% level of N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine was observed, whereas no 4-thiouridine, 5-carboxymethylaminomethyl-2-thiouridine, or mnm(5)s(2)U was found. We attribute the frameshifting ability mediated by the iscS51 mutation to a slow decoding of CAA by the tRNAGlnmnm5s2UUG due to mnm(5)s(2)U deficiency. Since the growth rate of the iscS deletion mutant in rich medium was similar to that of a mutant (mnmA) lacking only mnm(5)s(2)U, we suggest that the major cause for the reduced growth rate of the iscS deletion mutant is the lack of mnm(5)s(2)U and 5-carboxymethylaminomethyl-2-thiouridine and not the lack of any of the other three thiolated nucleosides that are also absent in the iscS deletion mutant.  相似文献   

10.
The cysteine desulfurase IscS in Salmonella enterica serovar Typhimurium is required for the formation of all four thiolated nucleosides in tRNA, which is thought to occur via two principally different biosynthetic pathways. The synthesis of 4-thiouridine (s(4)U) and 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) occurs by a transfer of sulfur from IscS via various proteins to the target nucleoside in the tRNA, and no iron-sulfur cluster protein participates, whereas the synthesis of 2-thiocytidine (s(2)C) and N(6)-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms(2)io(6)A) is dependent on iron-sulfur cluster proteins, whose formation and maintenance depend on IscS. Accordingly, inactivation of IscS should result in decreased synthesis of all thiolated nucleosides. We selected mutants defective either in the synthesis of a thiolated nucleoside (mnm(5)s(2)U) specific for the iron-sulfur protein-independent pathway or in the synthesis of a thiolated nucleoside (ms(2)io(6)A) specific for the iron-sulfur protein-dependent pathway. Although we found altered forms of IscS that influenced the synthesis of all thiolated nucleosides, consistent with the model, we also found mutants defective in subsets of thiolated nucleosides. Alterations in the C-terminal region of IscS reduced the level of only ms(2)io(6)A, suggesting that the synthesis of this nucleoside is especially sensitive to minor aberrations in iron-sulfur cluster transfer activity. Our results suggest that IscS has an intrinsic substrate specificity in how it mediates sulfur mobilization and/or iron-sulfur cluster formation and maintenance required for thiolation of tRNA.  相似文献   

11.
We have identified the cis isomer of N6-(4-hydroxy-isopentenyl)-2-methylthioadenosine (ms2io6A) as a component of the tRNA of Salmonella typhimurium. This is the first report of this compound in the tRNA of any member of the enterobacteriaceae: the nucleoside was previously thought to be found exclusively in plants or plant associated bacteria. Interestingly, all E. coli strains examined were found to lack ms2io6A. Evidence is presented which suggests S. typhimurium tRNA also contains low levels of 5-carboxymethylaminomethyl-2-thiouridine (cmnm5s2U) in addition to 5-methylaminomethyl-2-thiouridine (mnm5s2U).  相似文献   

12.
tRNA from Salmonella enterica serovar Typhimurium contains five thiolated nucleosides, 2-thiocytidine (s(2)C), 4-thiouridine (s(4)U), 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), 5-carboxymethylaminomethyl-2-thiouridine (cmnm(5)s(2)U), and N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms(2)io(6)A). The levels of all of them are significantly reduced in cells with a mutated iscS gene, which encodes the cysteine desulfurase IscS, a member of the ISC machinery that is responsible for [Fe-S] cluster formation in proteins. A mutant (iscU52) was isolated that carried an amino acid substitution (S107T) in the IscU protein, which functions as a major scaffold in the formation of [Fe-S] clusters. In contrast to the iscS mutant, the iscU52 mutant showed reduced levels of only two of the thiolated nucleosides, ms(2)io(6)A (10-fold) and s(2)C (more than 2-fold). Deletions of the iscU, hscA, or fdx genes from the isc operon lead to a similar tRNA thiolation pattern to that seen for the iscU52 mutant. Unexpectedly, deletion of the iscA gene, coding for an alternative scaffold protein for the [Fe-S] clusters, showed a novel tRNA thiolation pattern, where the synthesis of only one thiolated nucleoside, ms(2)io(6)A, was decreased twofold. Based on our results, we suggest two principal distinct routes for thiolation of tRNA: (i) a direct sulfur transfer from IscS to the tRNA modifying enzymes ThiI and MnmA, which form s(4)U and the s(2)U moiety of (c)mnm(5)s(2)U, respectively; and (ii) an involvement of [Fe-S] proteins (an unidentified enzyme in the synthesis of s(2)C and MiaB in the synthesis of ms(2)io(6)A) in the transfer of sulfur to the tRNA.  相似文献   

13.
Unusual anticodon loop structure found in E.coli lysine tRNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
Although both tRNA(Lys) and tRNA(Glu) of E. coli possess similar anticodon loop sequences, with the same hypermodified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the first position of their anticodons, the anticodon loop structures of these two tRNAs containing the modified nucleoside appear to be quite different as judged from the following observations. (1) The CD band derived from the mnm5s2U residue is negative for tRNA(Glu), but positive for tRNA(Lys). (2) The mnm5s2U monomer itself and the mnm5s2U-containing anticodon loop fragment of tRNA(Lys) show the same negative CD bands as that of tRNA(Glu). (3) The positive CD band of tRNA(Lys) changes to negative when the temperature is raised. (4) The reactivity of the mnm5s2U residue toward H2O2 is much lower for tRNA(Lys) than for tRNA(Glu). These features suggest that tRNA(Lys) has an unusual anticodon loop structure, in which the mnm5s2U residue takes a different conformation from that of tRNA(Glu); whereas the mnm5s2U base of tRNA(Glu) has no direct bonding with other bases and is accessible to a solvent, that of tRNA(Lys) exists as if in some way buried in its anticodon loop. The limited hydrolysis of both tRNAs by various RNases suggests that some differences exist in the higher order structures of tRNA(Lys) and tRNA(Glu). The influence of the unusual anticodon loop structure observed for tRNA(Lys) on its function in the translational process is also discussed.  相似文献   

14.
The gene encoding the bifunctional enzyme MnmC that catalyzes the two last steps in the biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm5s2U) in tRNA has been previously mapped at about 50 min on the Escherichia coli K12 chromosome, but to date the identity of the corresponding enzyme has not been correlated with any of the known open reading frames (ORFs). Using the protein fold-recognition approach, we predicted that the 74-kDa product of the yfcK ORF located at 52.6 min and annotated as "putative peptidase" comprises a methyltransferase domain and a FAD-dependent oxidoreductase domain. We have cloned, expressed, and purified the YfcK protein and demonstrated that it catalyzes the formation of mnm5s2U in tRNA. Thus, we suggest to rename YfcK as MnmC.  相似文献   

15.
Escherichia coli tRNA contains four naturally occurring nucleosides modified with sulfur. Cysteine is the intracellular sulfur source for each of these modified bases. We previously found that the iscS gene, a member of the nifS cysteine desulfurase gene family, is required for 4-thiouridine biosynthesis in E. coli. Since IscS does not bind tRNA, its role is the mobilization and distribution of sulfur to enzymes that catalyze the sulfur insertion steps. In addition to iscS, E. coli contains two other nifS homologs, csdA and csdB, each of which has cysteine desulfurase activity and could potentially donate sulfur for thionucleoside biosynthesis. Double csdA csdB and iscS csdA mutants were prepared or obtained, and all mutants were analyzed for thionucleoside content. It was found that unfractionated tRNA isolated from the iscS mutant strain contained <5% of the level of sulfur found in the parent strain. High-pressure liquid chromatography analysis of tRNA nuclease digests from the mutant strain grown in the presence of [(35)S]cysteine showed that only a small fraction of 2-thiocytidine was present, while the other thionucleosides were absent when cells were isolated during log phase. As expected, digests from the iscS mutant strain contained 6-N-dimethylallyl adenosine (i(6)A) in place of 6-N-dimethylallyl-2-methylthioadenosine and 5-methylaminomethyl uridine (mnm(5)U) instead of 5-methylaminomethyl-2-thiouridine. Prolonged growth of the iscS and iscS csdA mutant strains revealed a gradual increase in levels of 2-thiocytidine and 6-N-dimethylallyl-2-methylthioadenosine with extended incubation (>24 h), while the thiouridines remained absent. This may be due to a residual level of Fe-S cluster biosynthesis in iscS deletion strains. An overall scheme for thionucleoside biosynthesis in E. coli is discussed.  相似文献   

16.
(35)S-labelled tRNA from Escherichia coli was treated with chemical reagents such as CNBr, H(2)O(2), NH(2)OH, I(2), HNO(2), KMnO(4) and NaIO(4), under mild conditions where the four major bases were not affected. Gel filtration of the treated tRNA showed desulphurization to various extents, depending on the nature of the reagent. The treated samples after conversion into nucleosides were chromatographed on a phosphocellulose column. NH(2)OH, I(2) and NaIO(4) reacted with all the four thionucleosides of E. coli tRNA, 4-thiouridine (s(4)U), 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), 2-thiocytidine (s(2)C) and 2-methylthio-N(6)-isopentenyladenosine (ms(2)i(6)A), to various extents. CNBr, HNO(2) and NaHSO(3) reacted with s(4)U, mnm(5)s(2)U and s(2)C, but not with ms(2)i(6)A. KMnO(4) and H(2)O(2) were also found to react extensively with thionucleosides in tRNA. Iodine oxidation of (35)S-labelled tRNA showed that only 6% of the sulphur was involved in disulphide formation. Desulphurization of E. coli tRNA with CNBr resulted in marked loss of acceptor activities for glutamic acid, glutamine and lysine. Acceptor activities for alanine, arginine, glycine, isoleucine, methionine, phenylalanine, serine, tyrosine and valine were also affected, but to a lesser extent. Five other amino acids tested were almost unaffected. These results indicate the fate of thionucleosides in tRNA when subjected to various chemical reactions and the involvement of sulphur in aminoacyl-tRNA synthetase recognition of some tRNA species of E. coli.  相似文献   

17.
The bacterial tRNA(Lys)-specific PrrC-anticodon nuclease efficiently cleaved an anticodon stem-loop (ASL) oligoribonucleotide containing the natural modified bases, suggesting this region harbors the specificity determinants. Assays of ASL analogs indicated that the 6-threonylcarbamoyl adenosine modification (t(6)A37) enhances the reactivity. The side chain of the modified wobble base 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) has a weaker positive effect depending on the context of other modifications. The s(2)U34 modification apparently has none and the pseudouridine (psi39) was inhibitory in most modification contexts. GC-rich but not IC-rich stems abolished the activity. Correlating the reported structural effects of the base modifications with their effects on anticodon nuclease activity suggests preference for substrates where the anticodon nucleotides assume a stacked A-RNA conformation and base pairing interactions in the stem are destabilized. Moreover, the proposal that PrrC residue Asp(287) contacts mnm(5)s(2)U34 was reinforced by the observations that the mammalian tRNA(Lys-3) wobble base 5-methoxycarbonyl methyl-2-thiouridine (mcm(5)s(2)U) is inhibitory and that the D287H mutant favors tRNA(Lys-3) over Escherichia coli tRNA(Lys). The detection of this mutation and ability of PrrC to cleave the isolated ASL suggest that anticodon nuclease may be used to cleave tRNA(Lys-3) primer molecules annealed to the genomic RNA template of the human immunodeficiency virus.  相似文献   

18.
The mutation sufY204 mediates suppression of a +1 frameshift mutation in the histidine operon of Salmonella enterica serovar Typhimurium and synthesis of two novel modified nucleosides in tRNA. The sufY204 mutation, which results in an amino-acid substitution in a protein, is, surprisingly, dominant over its wild-type allele and thus it is a "gain of function" mutation. One of the new nucleosides is 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) modified by addition of a C(10)H(17) side chain of unknown structure. Increased amounts of both nucleosides in tRNA are correlated to gene dosage of the sufY204 allele, to an increased efficiency of frameshift suppression, and to a decreased amount of the wobble nucleoside mnm(5)s(2)U34 in tRNA. Purified tRNA(Gln)(cmnm(5)s(2)UUG) in the mutant strain contains a modified nucleoside similar to the novel nucleosides and the level of aminoacylation of tRNA(Gln)(cmnm(5)s(2)UUG) was reduced to 26% compared to that found in the wild type (86%). The results are discussed in relation to the mechanism of reading frame maintenance and the evolution of modified nucleosides in tRNA.  相似文献   

19.
Specific occurrence of selenium in enzymes and amino acid tRNAs   总被引:9,自引:0,他引:9  
In contrast to the widespread ability of bacteria, plants, and animals to incorporate selenium nonspecifically into proteins in the form of selenomethionine residues, the selenoamino acid selenocysteine occurs as a highly specific component of a few selenium-dependent enzymes. Selenocysteine has been identified in glycine reductase, formate dehydrogenase, and hydrogenase of bacterial origin and glutathione peroxidase from mammalian and avian sources. In these enzymes there is evidence that the selenol group, which is largely ionized at physiological pH, functions as a redox center. It now seems clear, from studies with both prokaryotes and eukaryotes, that the UGA opal stop codon is used to specify the cotranslational insertion of selenocysteine into proteins. The factors that allow this unusual use of the stop codon are, however, unknown. The occurrence of selenium as a normal constituent of several bacterial tRNA species has been established. The presence of a selenonucleoside, 5-methylaminomethyl-2-selenouridine, in the first or wobble position of the anticodons of certain glutamate and lysine iso-acceptor species influences codon-anticodon interaction and thus may serve to regulate translational processes. The biosynthesis of the selenonucleoside appears to involve the ATP-dependent activation of the sulfur in a preformed 5-methylaminomethyl-2-thiouridine residue in tRNA and replacement of the sulfur with selenium.  相似文献   

20.
MnmC catalyses the last two steps in the biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) in tRNA. Previously, we reported that this bifunctional enzyme is encoded by the yfcK open reading frame in the Escherichia coli K12 genome. However, the mechanism of its activity, in particular the potential structural and functional dependence of the domains responsible for catalyzing the two modification reactions, remains unknown. With the aid of the protein fold-recognition method, we constructed a structural model of MnmC in complex with the ligands and target nucleosides and studied the role of individual amino acids and entire domains by site-directed and deletion mutagenesis, respectively. We found out that the N-terminal domain contains residues responsible for binding of the S-adenosylmethionine cofactor and catalyzing the methylation of nm(5)s(2)U to form mnm(5)s(2)U, while the C-terminal domain contains residues responsible for binding of the FAD cofactor. Further, point mutants with compromised activity of either domain can complement each other to restore a fully functional enzyme. Thus, in the conserved fusion protein MnmC, the individual domains retain independence as enzymes. Interestingly, the N-terminal domain is capable of independent folding, while the isolated C-terminal domain is incapable of folding on its own, a situation similar to the one reported recently for the rRNA modification enzyme RsmC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号