首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha-L-arabinofuranosidase (AF) from the fungus Rhizomucor pusillus HHT-1 released arabinose at appreciable rates from (1-->5)-alpha-L-arabinofuranooligosaccharides, sugar beet arabinan and debranched arabinan. This enzyme preferentially hydrolyzed the terminal arabinofuranosyl residue [alpha-(1-->5)-linked] of the arabinan backbone rather than the arabinosyl side chain [alpha-(1-->3)-linked residues]. The enzyme-hydrolyzed arabinan reacted at and debranched the arabinan almost at the same rate, and the degree of conversion for both cases was 65%. Methylation analysis of arabinan showed that the arabinosyl-linkage proportions were 2:2:2:1, respectively, for (1-->5)-Araf, T-Araf, (1-->3, 5)-Araf and (1-->3)-Araf, while the ratios for the AF-digested arabinan shifted to 3:1:2:1. Enzyme digestion resulted in an increase in the proportion of (1-->5)-linked arabinose and a decrease in the proportion of terminal arabinose indicated this AF cleaved the terminal arabinosyl residue of the arabinan back bone [alpha-(1-->5)-linked residues]. Peak assignments in the 13C NMR spectra also confirmed this linkage composition of four kinds of arabinose residues. Both 1H and 13C NMR spectra are dominated by signals of the alpha-anomeric configuration of the arabinofuranosyl moieties. No signals were recorded for arabinopyranosyl moieties in the NMR spectra. Methylation and NMR analysis of native and AF-digested arabinan revealed that this alpha-L-arabinofuranosidase can only hydrolyse alpha-L-arabinofuranosyl residues of arabinan.  相似文献   

2.
The peptidoglycan-bound arabinogalactan of a virulent strain of Mycobacterium tuberculosis was per-O-methylated, partially hydrolyzed with acid, and the resulting oligosaccharides reduced and O-pentadeute-rioethylated. The per-O-alkylated oligoglycosyl alditol fragments were separated by high pressure liquid chromatography and the structures of 43 of these constituents determined by 1H NMR and gas chromatography/mass spectrometry. The arabinogalactan was shown to consist of a galactan containing alternating 5-linked beta-D-galactofuranosyl (Galf) and 6-linked beta-D-Galf residues. The arabinan chains are attached to C-5 of some of the 6-linked Galf residues. The arabinan is comprised of at least three major structural domains. One is composed of linear 5-linked alpha-D-arabinofuranosyl (Araf) residues; a second consists of branched 3,5-linked alpha-D-Araf units substituted with 5-linked alpha-D-Araf residues at both branched positions. The non-reducing terminal region of the arabinan was characterized by a 3,5-linked alpha-D-Araf residue substituted at both branched positions with the disaccharide beta-D-Araf-(1----2)-alpha-D-Araf. 13C NMR of intact soluble arabinogalactan established the presence of both alpha- and beta-Araf residues in this domain. This non-reducing terminal motif apparently provides the structural basis of the dominant immunogenicity of arabinogalactan within mycobacteria. A rhamnosyl residue occupies the reducing terminus of the galactan core and may link the arabinogalactan to the peptidoglycan. Evidence is also presented for the presence of minor structural features involving terminal mannopyranosyl units. Models for most of the heteropolysaccharide are proposed which should increase our understanding of a molecule responsible for much of the immunogenicity, pathogenicity, and peculiar physical properties of the mycobacterial cell.  相似文献   

3.
After removal of the mucilage with water at room temperature, pectic polysaccharides were solubilized from Opuntia ficus-indica fruit skin, by sequential extraction with water at 60 degrees C (WSP) and EDTA solution at 60 degrees C (CSP). Polysaccharides with neutral sugar content of 0.48 and 0.36 mol/mol galacturonic acid residue were obtained, respectively, in the WSP and CSP extracts. These pectic polysaccharides were de-esterified and fractionated by anion-exchange chromatography, yielding for each extract five fractions, which were thereafter purified by size-exclusion chromatography. Two of these purified fractions were characterized by sugar analysis combined with methylation and reduction-methylation analysis. The study was then supported by (1)H and (13)C NMR spectroscopy. The results showed that the water-soluble fraction WSP3 and the EDTA soluble fraction CSP3, consisted of a disaccharide repeating unit -->2)-alpha-l-Rhap-(1-->4)-alpha-d-GalpA-(1--> backbone, with side chains attached to O-4 of the rhamnosyl residues. The side chains contained highly branched alpha-(1-->5)-linked arabinan and short linear beta-(1-->4)-linked galactan.  相似文献   

4.
The lactonisation of alpha-Neup5Ac-(2-->8)-alpha-Neup5Ac-(2-->3)-beta-D-Galp-(1-->4)-D-Glc (disialyl lactose) was investigated. (1)H and (13)C NMR chemical shifts of disialyl lactose and alpha-Neup5Ac-(2-->8, 1-->9)-alpha-Neup5Ac-(2-->3, 1-->2)-beta-D-Galp-(1-->4)-D-Glc (disialyl lactose-dilactone) were assigned based on 1D and 2D NMR results, including edited HSQC, HSQC-TOSCY and HMBC. The time course of lactonisation was followed by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) with electrospray ionisation (ESI) mass spectrometry (MS) detection. The rate of lactonisation between alpha-(8)Neu5Ac and alpha-(3)Neu5Ac residues (lactonisation at the alpha-(2-->8) linkage) was faster than that of lactonisation between alpha-(3)Neu5Ac and Gal residues (lactonisation at the alpha-(2-->3) linkage). The mass spectra of disialyl lactose, its lactones, alpha-Neup5Ac-(2-->8)-alpha-Neup5Ac (alpha-(2-->8) disialic acid) and alpha-Neup5Ac-(2-->3)-beta-D-Galp-(1-->4)-D-Glc-lactone (3'-sialyllactose-lactone) showed that the alpha-(2-->8) linkage between Neu5Ac residues is difficult to cleave in the ESI-MS, compared with the alpha-(2-->3) linkage between Neu5Ac and Gal residues.  相似文献   

5.
The structure and bioactivity of a polysaccharide extracted and purified from a 4M KOH + H3BO3 solution from Prunus dulcis seed cell wall material was studied. Anion-exchange chromatography of the crude extract yielded two sugar-rich fractions: one neutral (A), the other acidic (E). These fractions contain a very similar monosaccharide composition: 5:2:1 for arabinose, uronic acids and xylose, respectively, rhamnose and galactose being present in smaller amounts. As estimated by size-exclusion chromatography, the acidic fraction had an apparent molecular mass of 762 kDa. Methylation analysis (from the crude and fractions A and E), suggests that the polysaccharide is an arabinan-rich pectin. In all cases, the polysaccharides bear the same type of structural Ara moieties with highly branched arabinan-rich pectic polysaccharides. The average relative proportions of the arabinosyl linkages is 3:2:1:1 for T-Araf:(1-->5)-Araf:(1-->3,5)-Araf:(1-->2,3,5)-Araf. The crude polysaccharide extract and fractions A and E induced a murine lymphocyte stimulatory effect, as evaluated by the in vitro and in vivo expression of lymphocyte activation markers and spleen mononuclear cells culture proliferation. The lymphocyte stimulatory effect was stronger on B- than on T-cells. No evidence of cytotoxic effects induced by the polysaccharide fractions was found.  相似文献   

6.
Exhaustive extraction of the endosperm from the seed of Gleditsia triacanthos using water at room temperature and 50 degrees C left a residue, which was further extracted at 95 degrees C. Precipitation of this extract with 2-propanol yielded major amounts of galactomannan components, while the supernatant was mainly composed of arabinose-rich constituents. Two fractions were obtained by anion-exchange chromatography. The fraction that eluted with water is an arabinan with (1-->5) alpha-L linkages and branching mainly on C-2, accompanied with equal amounts of a low-galactose galactomannan oligosaccharide, and a small proportion of a beta-(1-->4)-galactan. The fraction eluted with an increased ionic strength consists mainly of a similar arabinan, and lower proportions of a high-galactose galactomannan, galactan, and protein. The arabinan moiety in both fractions was characterized by chemical analysis and 1D and 2D NMR spectroscopic techniques.  相似文献   

7.
The structure of the O-antigen polysaccharide (PS) from the enteroaggregative Escherichia coli strain 180/C3 has been determined. Sugar and methylation analysis together with (1)H and (13)C NMR spectroscopy were the main methods used. The PS is composed of tetrasaccharide repeating units with the following structure: -->2)beta-D-Quip3NAc-(1-->3)beta-D-RIBf-(1-->4)beta-D-Galp-(1-->3)alpha-D-GalpNAc-(1-->. Analysis of NMR data indicates that the presented sequence of sugar residues also represents the biological repeating unit of the O-chain. The structure is closely related to that of O-antigen polysaccharide from E. coli O5 and partially to that of E. coli O65. The difference between the O-antigen from the 180/C3 strain and that of E. coli O5 is the linkage to the D-Quip3NAc residue, which in the latter strain is 4-O-substituted. The E. coli O65 O-antigen contains as part of its linear pentasaccharide repeating unit a similar structural element, namely -->4)-beta-d-GalpA-(1-->3)-alpha-D-GlcpNAc-(1-->2)-beta-D-Quip3NAc-(1-->, thereby indicating that a common epitope could be present for the two polysaccharides. Monospecific anti-E. coli O5 rabbit serum did not distinguish between the two positional isomeric structures neither in slide agglutination nor in an indirect enzyme immunoassay. The anti-O65 serum did react with both the 180/C3 and O5 LPS showing a partial cross-reactivity.  相似文献   

8.
A 2-O-methylfucosyl-containing heptasaccharide was released from red wine rhamnogalacturonan II (RG-II) by acid hydrolysis of the glycosidic linkage of the aceryl acid residue (AceA) and purified to homogeneity by size-exclusion and high-performance anion-exchange chromatographies. The primary structure of the heptasaccharide was determined by glycosyl-residue and glycosyl-linkage composition analyses, ESIMS, and by 1H and 13C NMR spectroscopy. The NMR data indicated that the pyranose ring of the 2,3-linked L-arabinosyl residue is conformationally flexible. The L-Arap residue was confirmed to be alpha-linked by NMR analysis of a tetraglycosyl-glycerol fragment, [alpha-L-Arap-(1-->4)-beta-D-Galp-(1-->2)-alpha-L-AcefA-(1-->3)-beta-L-Rhap-(1-->3)-Gro], generated by Smith degradation of RG-II. Our data together with the results of a previous study,(1) establish that the 2-O-Me Fuc-containing nonasaccharide side chain of wine RG-II has the structure (Api [triple bond] apiose): [see structure]. Data are presented to show that in Arabidopsis RG-II the predominant 2-O-MeFuc-containing side chain is a mono-O-acetylated heptasaccharide that lacks the non-reducing terminal beta-L-Araf and the alpha-L-Rhap residue attached to the O-3 of Arap, both of which are present on the wine nonasaccharide.  相似文献   

9.
The composition and structure of the O-polysaccharide of the lipopolysaccharide of Pseudomonas syringae pathovar garcae ICMP 8047 were studied using methylation analyses, Smith degradation, and 1H- and 13C-NMR spectroscopy, including two-dimensional correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), nuclear Overhauser effect spectroscopy (NOESY), and H-detected 1H,13C heteronuclear multiple-quantum coherence (HMQC) experiments. The polysaccharide was found to contain L-rhamnose and 3-acetamido-3, 6-dideoxy-D-galactose (D-Fuc3NAc) in the ratio 4:1 and to consist of two types of pentasaccharide repeating units. The major (1) and minor (2) repeating units differ from each other only in the position of substitution of one of the rhamnose residues in the main chain. Similar structural heterogeneity has been reported formerly in O-polysaccharides of some other P. syringae strains having a similar monosaccharide composition. A Fuc3NAc residue is attached to the main rhamnan chain as a side chain by a (alpha1-->4) glycosidic linkage; this has not hitherto been described in P. syringae: [figure].  相似文献   

10.
Dong Q  Yao J  Fang JN  Ding K 《Carbohydrate research》2007,342(10):1343-1349
Two major polysaccharide fractions, CDA-1A and CDA-3B, were isolated from the cold-water extract of Cistanche deserticola Y. C. Ma, a holoparasitic plant and a valuable traditional Chinese medicine, using anion-exchange chromatography on DEAE-cellulose and gel-permeation chromatography on Sephacryl S-300 and Sephadex G-150. Their major structural features were elucidated using component and linkage analyses, periodate oxidation, Smith degradation, partial acid hydrolysis, and NMR spectroscopy. The results indicated that CDA-1A is an alpha-(1-->4)-D-glucan with alpha-(1-->6)-linked branches attached to the O-6 of branch points and that CDA-3B is an RG-I polysaccharide containing a typical rhamnogalacturonan backbone and arabinogalactan or arabinan branches. Bioactivity tests showed that CDA-1A is inert for T-cell proliferation stimulation but active for B-cell proliferation, while CDA-3B is potent for the stimulation of both T- and B-cell proliferation.  相似文献   

11.
This report describes the determination of the complete primary structure of the adhesin receptor polysaccharide of Streptococcus oralis ATCC 55229 (previously characterized as Streptococcus sanguis H1), a Gram-positive bacteria implicated in dental plaque formation. The polysaccharide was isolated from S. oralis ATCC 55229 cells after deproteination, enzymatic hydrolysis, and ion exchange chromatography. It was shown to consist of rhamnose, galactose, glucose, glycerol, and phosphate, in molar ratios of 2:3:1:1:1. Sequence and linkage assignments of the glycosyl residues were obtained by methylation analysis followed by gas-liquid chromatography and electron-impact mass spectrometry. 31P NMR spectroscopy revealed that phosphate was present in a diester, connecting glycerol to one of the galactosyl residues. High-performance liquid chromatography of a partial acid hydrolysate of the polysaccharide confirmed this finding by showing galactose 6-phosphate and glycerol 1-phosphate. The structural determination was completed by the combination of two-dimensional homonuclear Hartmann-Hahn and NOE experiments and heteronuclear [1H,13C] and [1H,31P] multiple-quantum coherence experiments. Thus, the adhesin receptor polysaccharide of S. oralis ATCC 55229 was found to be a polymer composed of hexasaccharide repeating units that contain glycerol linked through a phosphodiester to C6 of the alpha-galactopyranosyl residue and are joined end-to-end through galactofuranosyl-beta(1-->3)-rhamnopyranosyl linkages: [formula: see text] This structure is novel among bacterial cell surface polysaccharides in general and specifically among those implicated in dental plaque formation.  相似文献   

12.
A study of fucoidan from the brown seaweed Chorda filum.   总被引:9,自引:0,他引:9  
Fucoidan fractions from the brown seaweed Chorda filum were studied using solvolytic desulfation. Methylation analysis and NMR spectroscopy were applied for native and desulfated polysaccharides. Homofucan sulfate from C. filum was shown to contain poly-alpha-(1-->3)-fucopyranoside backbone with a high degree of branching, mainly of alpha-(1-->2)-linked single units. Some fucopyranose residues are sulfated at O-4 (mainly) and O-2 positions. Some alpha-(1-->3)-linked fucose residues were shown by NMR to be 2-O-acetylated. The 1H and 13C NMR spectra of desulfated, deacetylated fucan were completely assigned. The spectral data obtained correspond to a quasiregular polysaccharide structure with a branched hexasaccharide repeating unit. Other fucoidan fractions from C. filum have more complex carbohydrate composition and give rather complex methylation patterns. [formula: see text]  相似文献   

13.
A polysaccharide fraction was isolated from fresh Aloe barbadensis Miller leaves, which can promote the wound healing of the superficial II scald model mice. The monosaccharide composition and linkage determination were investigated by methylation and GC–MS, acetylation and GC, 13C NMR and DEPT. The results show that its glycosyl components contain d-glucose, d-galactose, d-xylose in a molar ratio of 5:5:1, and the API consists of a backbone of →2)-α-d-Galp-(1  2)-α-d-Glcp-(1→, having a branch of α-d-xylofuranosyl residue that is (1  3) linkage at O-3 of α-d-galactopyranosyl residue. It was found that the API could enhance proliferation of the human fibroblasts in vitro. The mechanisms of promotion proliferation were studied preliminarily.  相似文献   

14.
The cold-water extract from the skin of Opuntia ficus-indica fruits was fractionated by anion-exchange chromatography. The major fraction, which was purified by size exclusion chromatography, consisted of a polysaccharide composed of galactose and arabinose residues in the ratio 6.3:3.3, with traces of rhamnose, xylose and glucose, but no uronic acid. The results of methylation analysis, supported by (13)C NMR spectroscopy, indicated that this polysaccharide corresponded to an arabinogalactan having a backbone of (1-->4)-linked beta-D-galactopyranosyl residues with 39.5% of these units branched at O-3. The side-groups consisted either of single L-arabinofuranosyl units or L-arabinofuranosyl alpha-(1-->5)-linked disaccharides. This polysaccharide is thus an arabinogalactan that can be classified in the type I of the arabinogalactan family.  相似文献   

15.
Arabinopyranosyltransferase (ArapT) activity that results in the transfer of a single arabinopyranose (Arap) residue from UDP-beta-L-arabinopyranose (UDP-Arap) to exogenous (1-->5)-linked alpha-L-arabino-oligosaccharides labeled with 2-aminobenzamide (2-AB) at their reducing ends was identified in a particulate preparation obtained from 3-day-old mung bean (Vigna radiate L. Wilezek) hypocotyls. The transferred Ara residue was shown to be beta-(1-->3)-linked to O-3 of the non-reducing terminal Araf residues of the oligosaccharide using nuclear magnetic resonance spectroscopy together with glycosyl composition and glycosyl linkage composition analyses. The 2AB-labeled arabino-octasaccharide was the most effective acceptor substrate analyzed, although arabino-oligosaccharides with a degree of polymerization between 4 and 7 were also acceptor substrates. Maximum ArapT activity was obtained at pH 6.5-7.0, and 20 degrees C in the presence of 25 mM Mn(2+) and 0.5% Triton X-100.  相似文献   

16.
Polysaccharide composition of the fruit juice of Morinda citrifolia (Noni)   总被引:1,自引:0,他引:1  
Bui AK  Bacic A  Pettolino F 《Phytochemistry》2006,67(12):1271-1275
An ethanol-insoluble, high molecular weight fraction was collected from the juice of Morinda citrifolia fruit grown in Viet Nam. The fraction is composed primarily of carbohydrate (67% (w/w)). The polysaccharide fraction consists predominantly of GalAp (53.6mol%), Araf (13.6mol%), Galp (17.9mol%) and Rhap (9.5mol%). Glycosyl linkage analysis suggests the polysaccharide fraction contains mostly the pectic polysaccharides, homogalacturonan (4-GalAp), rhamnogalacturonan I (4-GalAp, 2-Rhap, 2,4-Rhap), arabinan (5-Araf, 3,5-Araf, t-Araf), type I arabinogalactan (4-Galp, 3,4-Galp, t-Araf) and beta-glucosyl Yariv-binding type II arabinogalactan (3,6-Galp, t-Araf). Low levels of xyloglucan (4-Glcp, 4,6-Glcp, t-Xylp, t-Fucp), heteroxylan (4-Xylp) and heteromannan (4-Manp) are also present.  相似文献   

17.
O-specific polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Pseudoalteromonas tetraodonis type strain IAM 14160(T) and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, 1H,(13)C HMQC and HMBC experiments. The polysaccharide was found to consist of hexasaccharide repeating units containing one residue each of D-Gal, D-GlcA, D-GalNAc and D-GlcNAc and two residues of 3,6-dideoxy-L-xylo-hexose (colitose, Col) and having the following structure:In common with the polysaccharides of some other bacteria, the polysaccharide studied contains a tetrasaccharide fragment alpha-Colp-(1-->2)-beta-D-Galp-(1-->3)-[alpha-Colp-(1-->4)]-beta-D-GlcpNAc, which is a colitose ('3-deoxy-L-fucose') analogue of the Lewis(b) blood group antigenic determinant.  相似文献   

18.
Chen XM  Tian GY 《Carbohydrate research》2003,338(11):1235-1241
A fructan named CoPS3 was isolated from Cyathula officinalis Kuan. The structure of CoPS3 was determined by methylation, by the reductive-cleavage method combined with GC-MS analysis, and both 1D and 2D 1H and 13C NMR spectroscopy. These results show that CoPS3 is a graminans-type fructan that is comprised of a beta-D-fructofuranosyl backbone having residues linked (2-->1)- and (2-->6) with branches and an alpha-D-glucopyranose residue on the nonreducing end of the fructan chain. Each branch is terminated by a beta-D-Fruf residue. Bioassay showed that it could inhibit growth of Lewis pulmonary carcinoma implanted in mice.  相似文献   

19.
The structure of the pneumococcal common antigen, C-polysaccharide, from a noncapsulated pneumococcal strain, CSR SCS2, was studied using 1H-NMR, 13C-NMR and 31P-NMR spectroscopy. The dependence of NMR chemical shifts on the variation in pD was also studied. It was established that the C-polysaccharide is composed of a backbone of tetrasaccharide-ribitol repeating units that are linked to each other by a phosphodiester linkage between position 5 of a D-ribitol residue and position 6 of a beta-D-glucopyranosyl residue. The polysaccharide is substituted with one residue of phosphocholine at position 6 of the 4-substituted 2-acetamido-2-deoxy-alpha-D-galactopyranosyl residue. Both galactosamine residues in the polysaccharide are N-acetylated. O)-P-Cho | 6 6)-beta-D-Glcp-(1-->3)-alpha-AATp-(1-->4)-alpha-D-GalpNAc-(1-->3)- bet a-D-GalpNAc-(1-->1)-D-ribitol-5-P-(O--> where AAT is 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose and Cho is choline. This structure differs, concerning phosphocholine substituents and N-acetylation, from those reported previously for pneumococcal C-polysaccharide [Jennings, H.J., Lugowski, C. & Young, N.M. (1980) Biochemistry 19, 4712-4719; Fischer, W., Behr, T., Hartmann, R., Peter-Katalinic, J. & Egge, H. (1993) Eur. J. Biochem. 215, 851-857; Kulakowska, M., Brisson, J.-R., Griffith, D.W., Young, N.M. & Jennings, H.J. (1993) Can. J. Chem. 71, 644-648]. The structures of the C-polysaccharides present in three pneumococcal types were also examined. They contain one (in 18B) or two (in 32F and 32A) phosphocholine residues in the repeating unit. The degree of substitution was not determined. The backbone of all examined C-polysaccharides was identical and in all cases both galactosamine residues appeared to be N-acetylated.  相似文献   

20.
Park KH  Kim MJ  Lee HS  Han NS  Kim D  Robyt JF 《Carbohydrate research》1998,313(3-4):235-246
It was observed that Bacillus stearothermophilus maltogenic amylase cleaved the first glycosidic bond of acarbose to produce glucose and a pseudotrisaccharide (PTS) that was transferred to C-6 of the glucose to give an alpha-(1-->6) glycosidic linkage and the formation of isoacarbose. The addition of a number of different carbohydrates to the digest gave transfer products in which PTS was primarily attached alpha-(1-->6) to D-glucose, D-mannose, D-galactose, and methyl alpha-D-glucopyranoside. With D-fructopyranose and D-xylopyranose, PTS was linked alpha-(1-->5) and alpha-(1-->4), respectively. PTS was primarily transferred to C-6 of the nonreducing residue of maltose, cellobiose, lactose, and gentiobiose. Lesser amounts of alpha-(1-->3) and/or alpha-(1-->4) transfer products were also observed for these carbohydrate acceptors. The major transfer product to sucrose gave PTS linked alpha-(1-->4) to the glucose residue. alpha,alpha-Trehalose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4). Maltitol gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the glucopyranose residue. Raffinose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the D-galactopyranose residue. Maltotriose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the nonreducing end glucopyranose residue. Xylitol gave PTS linked alpha-(1-->5) as the major product and D-glucitol gave PTS linked alpha-(1-->6) as the only product. The structures of the transfer products were determined using thin-layer chromatography, high-performance ion chromatography, enzyme hydrolysis, methylation analysis and 13C NMR spectroscopy. The best acceptor was gentiobiose, followed closely by maltose and cellobiose, and the weakest acceptor was D-glucitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号