首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously shown that the aptamer, UCLA1, is able to inhibit HIV-1 replication in peripheral blood mononuclear cells (PBMCs) by binding to residues in gp120. In this study we examined whether UCLA1 was effective against HIV-1 subtype C isolates in monocyte-derived macrophages (MDMs). Of 4 macrophage-tropic isolates tested, 3 were inhibited by UCLA1 in the low nanomolar range (IC80<29 nM). One isolate that showed reduced susceptibility (<50 nM) to UCLA1 contained mutations in the α5 helix next to the CD4 and co-receptor (CoR) binding complex. To further evaluate aptamer resistance, two primary viruses were subjected to increasing concentrations of UCLA1 over a period of 84 days in PBMCs. One isolate showed a 7-fold increase in IC80 (351 nM) associated with genetic changes, some of which were previously implicated in resistance. This included F223Y in the C2 region and P369L within the CD4 and CoR binding complex. A second isolate showed a 3-fold increase in IC80 (118 nM) but failed to show any genetic changes. Collectively, these data show that UCLA1 can efficiently block HIV-1 infection in MDMs and PBMCs with escape mutations arising in some isolates after prolonged exposure to the aptamer. This supports the further development of the UCLA1 aptamer as a HIV-1 entry inhibitor.  相似文献   

2.
The identification and characterization of new human monoclonal antibodies (hMAbs) able to neutralize primary human immunodeficiency virus type 1 (HIV-1) isolates from different subtypes may help in our understanding of the mechanisms of virus entry and neutralization and in the development of entry inhibitors and vaccines. For enhanced selection of broadly cross-reactive antibodies, soluble HIV-1 envelope glycoproteins (Envs proteins) from two isolates complexed with two-domain soluble CD4 (sCD4) were alternated during panning of a phage-displayed human antibody library; these two Env proteins (89.6 and IIIB gp140s), and one additional Env (JR-FL gp120) alone and complexed with sCD4 were used for screening. An antibody with relatively long HCDR3 (17 residues), designated m14, was identified that bound to all antigens and neutralized heterologous HIV-1 isolates in multiple assay formats. Fab m14 potently neutralized selected well-characterized subtype B isolates, including JRCSF, 89.6, IIIB, and Yu2. Immunoglobulin G1 (IgG1) m14 was more potent than Fab m14 and neutralized 7 of 10 other clade B isolates; notably, although the potency was on average significantly lower than that of IgG1 b12, IgG1 m14 neutralized two of the isolates with significantly lower 50% inhibitory concentrations than did IgG1 b12. IgG1 m14 neutralized four of four selected clade C isolates with potency higher than that of IgG1 b12. It also neutralized 7 of 17 clade C isolates from southern Africa that were difficult to neutralize with other hMAbs and sCD4. IgG1 m14 neutralized four of seven primary HIV-1 isolates from other clades (A, D, E, and F) much more efficiently than did IgG1 b12; for the other three isolates, IgG b12 was much more potent. Fab m14 bound with high (nanomolar range) affinity to gp120 and gp140 from various isolates; its binding was reduced by soluble CD4 and antibodies recognizing the CD4 binding site (CD4bs) on gp120, and its footprint as defined by alanine-scanning mutagenesis overlaps that of b12. These results suggest that m14 is a novel CD4bs cross-reactive HIV-1-neutralizing antibody that exhibits a different inhibitory profile compared to the only known potent broadly neutralizing CD4bs human antibody, b12, and may have implications for our understanding of the mechanisms of immune evasion and for the development of inhibitors and vaccines.  相似文献   

3.
One strategy for the generation of broadly reactive neutralizing antibodies (NA) against human immunodeficiency virus type 1 (HIV-1) primary isolates is to use immunogens that have constrained HIV-1 envelope gp120 conformations reflective of triggered envelope on the surface of virions. A major change in gp120 following binding to CD4 is the enhanced exposure of the CCR5 binding site. One inducer of CCR5 binding site epitopes on gp120 is the human anti-gp120 monoclonal antibody, A32. We have made cross-linked A32-rgp120(89.6) and A32-rgp120(BaL) complexes and have compared their immunogenicities to those of uncomplexed recombinant gp120(BaL) (rgp120(BaL)) and rgp120(89.6). A32-rgp120(89.6) and A32-rgp120(BaL) complexes had stable induced CCR5 binding site expression compared to that of uncomplexed rgp120s. However, the A32-rgp120 complexes had similar capacities in guinea pigs for induction of NA against HIV-1 primary isolates versus that of rgp120 alone. A32-rgp120(89.6) induced antibodies that neutralized 6 out of 11 HIV-1 isolates, while rgp120(89.6) alone induced antibodies that neutralized 4 out of 11 HIV-1 isolates. A32-rgp120(BaL) complexes induced antibodies that neutralized 4 out of 14 HIV-1 isolates while, surprisingly, non-cross-linked rgp120(BaL) induced antibodies that neutralized 9 out of 14 (64%) HIV-1 isolates. Thus, stable enhanced expression of the coreceptor binding site on constrained gp120 is not sufficient for inducing broadly neutralizing anti-HIV-1 NA. Moreover, the ability of HIV-1 rgp120(BaL) to induce antibodies that neutralized approximately 60% of subtype B HIV-1 isolates warrants consideration of using HIV-1 BaL as a starting point for immunogen design for subtype B HIV-1 experimental immunogens.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) has evolved a number of strategies to resist current antiretroviral drugs and the selection pressures of humoral and cellular adaptive immunity. For example, R5 strains, which use the CCR5 coreceptor for entry and are the dominant viral phenotype for HIV-1 transmission and AIDS pathogenesis, are relatively resistant to neutralization by antibodies, as are other clinical isolates. In order to overcome these adaptations, we raised nucleic acid aptamers to the SU glycoprotein (gp120) of the R5 strain, HIV-1(Ba-L). These not only bound gp120 with high affinity but also neutralized HIV-1 infectivity in human peripheral blood mononuclear cells (PBMCs) by more than 1,000-fold. Furthermore, these aptamers were able to neutralize the infectivity of R5 clinical isolates of HIV-1 derived from group M (subtypes A, C, D, E, and F) and group O. One aptamer defined a site on gp120 that overlaps partially with the conserved, chemokine receptor-binding, CD4-induced epitope recognized by monoclonal antibody 17b. In contrast to the antibody, the site is accessible to aptamer in the absence of CD4 binding. Neutralizing aptamers such as this could be exploited to provide leads in developing alternative, efficacious anti-HIV-1 drugs and lead to a deeper understanding of the molecular interactions between the virus and its host cell.  相似文献   

5.
Two monoclonal antibodies designated BAT085 and G3-136 were raised by immunizing BALB/c mice with gp120 purified from human immunodeficiency virus type 1 (HIV-1) IIIB-infected H9 cell extracts. Among three HIV-1 laboratory isolates (IIIB, MN, and RF), BAT085 neutralized only IIIB infection of CEM-SS cells, whereas G3-136 neutralized both IIIB and RF. These antibodies also neutralized a few primary HIV-1 isolates in the infection of activated human peripheral blood mononuclear cells. In indirect immunofluorescence assays, BAT085 bound to H9 cells infected with IIIB or MN, while G3-136 bound to H9 cells infected with IIIB or RF, but not MN. Using sequence-overlapping synthetic peptides of HIV-1 IIIB gp120, the binding site of BAT085 and G3-136 was mapped to a peptidic segment in the V2 region (amino acid residues 169 to 183). The binding of these antibodies to immobilized gp120 was not inhibited by the antibodies directed to the principal neutralization determinant in the V3 region or to the CD4-binding domain of gp120. In a competition enzyme-linked immunosorbent assay, soluble CD4 inhibited G3-136 but not BAT085 from binding to gp120. Deglycosylation of gp120 by endo-beta-N-acetylglucosaminidase H or reduction of gp120 by dithiothreitol diminished its reactivity with G3-136 but not with BAT085. These results indicate that the V2 region of gp120 contains multiple neutralization determinants recognized by antibodies in both a conformation-dependent and -independent manner.  相似文献   

6.
The relevance of simian/human immunodeficiency virus (SHIV) infection of macaques to HIV-1 infection in humans depends on how closely SHIVs mimic HIV-1 transmission, pathogenesis, and diversity. Circulating HIV-1 strains are predominantly subtypes C and A and overwhelmingly require CCR5 for entry, yet most SHIVs incorporate CXCR4-using subtype B envelopes (Envs). While pathogenic subtype C-based SHIVs have been constructed, the subtype A-based SHIVs (SHIV-As) constructed to date have been unable to replicate in macaque cells. To understand the barriers to SHIV-A replication in macaque cells, HIVA(Q23)/SIV(vif) was constructed by engineering a CCR5-tropic subtype A provirus to express SIV vif, which counters the macaque APOBEC3G restriction. HIVA(Q23)/SIV(vif) replicated poorly in pig-tailed macaque (Ptm) lymphocytes, but viruses were adapted to Ptm lymphocytes. Two independent mutations in gp120, G312V (V3 loop) and A204E (C2 region), were identified that increased peak virus levels by >100-fold. Introduction of G312V and A204E to multiple subtype A Envs and substitution of G312 and A204 with other residues increased entry into Ptm cells by 10- to 100-fold. G312V and A204E Env variants continued to require CCR5 for entry but were up to 50- and 200-fold more sensitive to neutralization by IgG1b12 and soluble CD4 and had a 5- to 50-fold increase in their ability to utilize Ptm CD4 compared to their wild-type counterparts. These findings identify the inefficient use of Ptm CD4 as an unappreciated restriction to subtype A HIV-1 replication in Ptm cells and reveal amino acid changes to gp120 that can overcome this barrier.  相似文献   

7.
b12, one of the few broadly neutralizing antibodies against HIV-1, binds to the CD4 binding site (CD4bs) on the gp120 subunit of HIV-1 Env. Two small fragments of HIV-1 gp120, b121a and b122a, which display about 70% of the b12 epitope and include solubility-enhancing mutations, were designed. Bacterially expressed b121a/b122a were partially folded and could bind b12 but not the CD4bs-directed non-neutralizing antibody b6. Sera from rabbits primed with b121a or b122a protein fragments and boosted with full-length gp120 showed broad neutralizing activity in a TZM-bl assay against a 16-virus panel that included nine Tier 2 and 3 viruses as well as in a five-virus panel previously designed to screen for broad neutralization. Using a mean IC50 cut-off of 50, sera from control rabbits immunized with gp120 alone neutralized only one virus of the 14 non-Tier 1 viruses tested (7%), whereas sera from b121a- and b122a-immunized rabbits neutralized seven (50%) and twelve (86%) viruses, respectively. Serum depletion studies confirmed that neutralization was gp120-directed and that sera from animals immunized with gp120 contained lower amounts of CD4bs-directed antibodies than corresponding sera from animals immunized with b121a/b122a. Competition binding assays with b12 also showed that b121a/2a sera contained significantly higher amounts of antibodies directed toward the CD4 binding site than the gp120 sera. The data demonstrate that it is possible to elicit broadly neutralizing sera against HIV-1 in small animals.  相似文献   

8.
Schön A  Madani N  Klein JC  Hubicki A  Ng D  Yang X  Smith AB  Sodroski J  Freire E 《Biochemistry》2006,45(36):10973-10980
NBD-556 and the chemically and structurally similar NBD-557 are two low-molecular weight compounds that reportedly block the interaction between the HIV-1 envelope glycoprotein gp120 and its receptor, CD4. NBD-556 binds to gp120 with a binding affinity of 2.7 x 10(5) M(-1) (K(d) = 3.7 muM) in a process characterized by a large favorable change in enthalpy partially compensated by a large unfavorable entropy change, a thermodynamic signature similar to that observed for binding of sCD4 to gp120. NBD-556 binding is associated with a large structuring of the gp120 molecule, as also demonstrated by CD spectroscopy. NBD-556, like CD4, activates the binding of gp120 to the HIV-1 coreceptor, CCR5, and to the 17b monoclonal antibody, which recognizes the coreceptor binding site of gp120. NBD-556 stimulates HIV-1 infection of CD4-negative, CCR5-expressing cells. The thermodynamic signature of the binding of NBD-556 to gp120 is very different from that of another viral entry inhibitor, BMS-378806. Whereas NBD-556 binds gp120 with a large favorable enthalpy and compensating unfavorable entropy changes, BMS-378806 does so with a small binding enthalpy change in a mostly entropy-driven process. NBD-556 is a competitive inhibitor of sCD4 and elicits a similar structuring of the coreceptor binding site, whereas BMS-378806 does not compete with sCD4 and does not induce coreceptor binding. These studies demonstrate that low-molecular-weight compounds can induce conformational changes in the HIV-1 gp120 glycoprotein similar to those observed upon CD4 binding, revealing distinct strategies for inhibiting the function of the HIV-1 gp120 envelope glycoprotein. Furthermore, competitive and noncompetitive compounds have characteristic thermodynamic signatures that can be used to guide the design of more potent and effective viral entry inhibitors.  相似文献   

9.
Interaction of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein with the primary receptor, CD4, promotes binding to a chemokine receptor, either CCR5 or CXCR4. The chemokine receptor-binding site on gp120 elicits CD4-induced (CD4i) antibodies in some HIV-1-infected individuals. Like CCR5 itself, the CD4i antibody 412d exhibits a preference for CCR5-using HIV-1 strains and utilizes sulfated tyrosines to achieve binding to gp120. Here, we show that 412d binding requires the gp120 beta19 strand and the base of the V3 loop, elements that are important for the binding of the CCR5 N terminus. Two gp120 residues in the V3 loop base determined 412d preference for CCR5-using HIV-1 strains. A chimeric molecule in which the 412d heavy-chain third complementarity-determining loop sequence replaces the CCR5 N terminus functioned as an efficient second receptor, selectively supporting the entry of CCR5-using HIV-1 strains. Sulfation of N-terminal tyrosines contributed to the function of this chimeric receptor. These results emphasize the close mimicry of the CCR5 N terminus by the gp120-interactive region of a naturally elicited CD4i antibody.  相似文献   

10.
Several porphyrin derivatives were reported to have anti-HIV-1 activity. Among them, meso-teta(4-carboxyphenyl)porphine (MYCPP) and other carboxyphenyl derivatives were the most potent inhibitors (EC50 < 0.7 μM). MTCPP bound to the HIV-1 enveloope glycoprotein gp120 and to full-length V3 loop peptides corresponding to several HIV-1 isolates but not to other peptides from gp120+gp41. However, it remained possible that MTCPP bound to HIV-1 envelop glycoprotein gp120 and to full-length V3 loop peptides corresponding to several HIV-1 isolates but not to other peptides from gp120+gp41. However, it remained possible that MTCPP bound to regions on gp120 which cannot be mimicked by peptides. Further characterization of the binding domain for MTCPP is important for understanding the antiviral activity of porphyrins and for the design of anit-HIV-1 drugs interfering with functions of the virus envelope. Results presented here show that: (i) deletion of the V3 loop from the gp120 sequence resulted in drastically diminished MTCPP binding, suggesting that the V3 loop is the dominant if not the only target site on gp120; (ii) this site was only partially mimicked by full-length V3 loop peptides; (iii) MTCPP binding to the gp120 V3 loop elicited allosteric effects resulting in decreased accessibility of the CD4 receptor binding site; (iv) the binding site for MTCPP lies within the central portion of the V3 loop (KSIHIGPGRAFY for the HIV-1 subtype B consensus sequence) and does not involve directly the GPG apex of the loop. These results may help in designing antiviral compounds with improved activity.  相似文献   

11.
We have analyzed a panel of eight murine monoclonal antibodies (MAbs) that depend on the V2 domain for binding to human immunodeficiency virus type 1 (HIV-1) gp120. Each MAb is sensitive to amino acid changes within V2, and some are affected by substitutions elsewhere. With one exception, the MAbs were not reactive with peptides from the V2 region, or only poorly so. Hence their ability to bind recombinant strain IIIB gp120 depended on the preservation of native structure. Three MAbs cross-reacted with strain RF gp120, but only one cross-reacted with MN gp120, and none bound SF-2 gp120. Four MAbs neutralized HIV-1 IIIB with various potencies, and the one able to bind MN gp120 neutralized that virus. Peptide serology indicated that antibodies cross-reactive with the HxB2 V1 and V2 regions are rarely present in HIV-1-positive sera, but the relatively conserved segment between the V1 and V2 loops was recognized by antibodies in a significant fraction of sera. Antibodies able to block the binding of V2 MAbs to IIIB or MN gp120 rarely exist in sera from HIV-1-infected humans; more common in these sera are antibodies that enhance the binding of V2 MAbs to gp120. This enhancement effect of HIV-1-positive sera can be mimicked by several human MAbs to different discontinuous gp120 epitopes. Soluble CD4 enhanced binding of one V2 MAb to oligomeric gp120 but not to monomeric gp120, perhaps by inducing conformational changes in the oligomer.  相似文献   

12.
The V3 loop and the bridging sheet domain of human immunodeficiency virus type 1 (HIV-1) subtype B envelope glycoprotein gp120 have been implicated in CCR5 coreceptor utilization. In this study, mutant envelope glycoproteins of a subtype C isolate containing substitutions in the V3 or C4 region were generated to determine which are required for efficient CCR5-dependent cell fusion and viral entry. We found that the V3 crown and C4 residues are relatively dispensable for cell-cell fusion, although some residues may be involved in the regulation of early postentry steps in viral replication. In contrast, seven highly conserved residues located in the V3 stem are critical for CCR5 utilization, which can explain the apparent paradox that the functional convergence in CCR5 usage by genetically divergent HIV-1 strains involves a variable region. The finding that C4 residues do not have a critical role may appear to contradict the current model that bridging sheet residues are involved in the gp120-CCR5 interaction. However, a plausible interpretation is that these C4 residues may have a distinct role in the binding and fusion steps of the gp120-CCR5 interaction.  相似文献   

13.
The binding of human immunodeficiency virus type 1 (HIV-1) to the cellular receptor CD4 has been suggested to induce conformational changes in the viral envelope glycoproteins that promote virus entry. Conserved, discontinuous epitopes on the HIV-1 gp120 glycoprotein recognized by the 17b, 48d, and A32 antibodies are preferentially exposed upon the binding of soluble CD4 (sCD4). The binding of the 17b and 48d antibodies to the gp120 glycoprotein can also be enhanced by the binding of the A32 antibody. Here we constructed HIV-1 gp120 mutants in which the variable segments of the V1/V2 and V3 structures were deleted, individually or in combination, while the 17b, 48d, and A32 epitopes were retained. The effects of the variable loop deletions on the function of the HIV-1 envelope glycoproteins and on the exposure of epitopes induced by sCD4 or A32 binding to the monomeric gp120 glycoprotein were examined. The variable-loop-deleted envelope glycoproteins were able to mediate virus entry, albeit at lower efficiencies than those of the wild-type glycoproteins. Thus, the V1/V2 and V3 variable sequences contribute to the efficiency of HIV-1 entry but are not absolutely required for the process. Neither the V1/V2 nor V3 loops were necessary for the increase in exposure of the 17b/48d epitopes induced by binding of the A32 monoclonal antibody. By contrast, induction of the 17b, 48d, and A32 epitopes by sCD4 binding apparently involves a movement of the V1/V2 loops, which in the absence of CD4 partially mask these epitopes on the native gp120 monomer. The results obtained with a mutant glycoprotein containing a deletion of the V1 loop alone indicated that the contribution of the V2 loop to these phenomena was more significant than that of the V1 sequences. These results suggest that the V1/V2 loops, which have been previously implicated in CD4-modulated, postattachment steps in HIV-1 entry, contribute to CD4-induced gp120 conformational changes detected by the 17b, 48d, and A32 antibodies.  相似文献   

14.
The glycans on HIV-1 gp120 play an important role in shielding neutralization-sensitive epitopes from antibody recognition. They also serve as targets for lectins that bind mannose-rich glycans. In this study, we investigated the interaction of the lectin griffithsin (GRFT) with HIV-1 gp120 and its effects on exposure of the CD4-binding site (CD4bs). We found that GRFT enhanced the binding of HIV-1 to plates coated with anti-CD4bs antibodies b12 and b6 or the CD4 receptor mimetic CD4-IgG2. The average enhancement of b12 or b6 binding was higher for subtype B viruses than for subtype C, while for CD4-IgG2, it was similar for both subtypes, although lower than observed with antibodies. This GRFT-mediated enhancement of HIV-1 binding to b12 was reflected in synergistic neutralization for 2 of the 4 viruses tested. The glycan at position 386, which shields the CD4bs, was involved in both GRFT-mediated enhancement of binding and neutralization synergism between GRFT and b12. Although GRFT enhanced CD4bs exposure, it simultaneously inhibited ligand binding to the coreceptor binding site, suggesting that GRFT-dependent enhancement and neutralization utilize independent mechanisms. This study shows for the first time that GRFT interaction with gp120 exposes the CD4bs through binding the glycan at position 386, which may have implications for how to access this conserved site.  相似文献   

15.
16.
HIV-1 utilizes CD4 and the chemokine coreceptor for viral entry. The coreceptor CCR5 binding site on gp120 partially overlaps with the binding epitope of 17b, a neutralizing antibody of HIV-1. We designed a multicomponent biosensor assay to investigate the kinetic mechanism of interaction between gp120 and its receptors and the cooperative effect of the CCR5 binding site on the CD4 binding site, using 17b as a surrogate of CCR5. The Env gp120 proteins from four viral strains (JRFL, YU2, 89.6, and HXB2) and their corresponding C1-, V1/V2-, C5-deleted mutants (DeltaJRFL, DeltaYU2, Delta89.6, and DeltaHXB2) were tested in this study. We found that, across the primary and lab-adapted virus strains, 17b reduced the affinity of all four full-length Env gp120s for sCD4 by decreasing the on-rate and increasing the off-rate. This effect of 17b on full-length gp120 binding to sCD4 contrasts with the enhancing effect of sCD4 on gp120-17b interaction. For the corresponding loop-deleted mutants of Env gp120, the off-rates of the gp120-sCD4 interaction were greatly reduced in the presence of 17b, resulting in higher affinities (except for that of DeltaHXB2). The results suggest that, when 17b is prebound to full-length gp120, the V1/V2 loops may be relocated to a position that partially blocks the CD4-binding site, leading to weakening of the CD4 interaction. Given the fact that the 17b binding epitope partially overlaps with the binding site of CCR5, the kinetic results suggest that coreceptor CCR5 binding could have a similar "release" effect on the gp120-CD4 interaction by increasing the off-rate of the latter. The results also suggest that the neutralizing effect of 17b may arise not only from partially blocking the CCR5 binding site but also from reducing the CD4 binding affinity of gp120. This negative cooperative effect of 17b may provide insight into approaches to designing antagonists for viral entry.  相似文献   

17.
Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide dC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While dC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1alpha to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of dC13 implies additional mode(s) of action. These results suggest that dC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors.  相似文献   

18.
The gp120 envelope glycoprotein of primary human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and the CCR5 chemokine receptor on the target cell. Previously, we adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for CD4-independent replication were limited to the V2 loop-V1/V2 stem. Here we show that elimination of a single glycosylation site at asparagine 197 in the V1/V2 stem is sufficient for CD4-independent gp120 binding to CCR5 and for HIV-1 entry into CD4-negative cells expressing CCR5. Deletion of the V1/V2 loops also allowed CD4-independent viral entry and gp120 binding to CCR5. The binding of the wild-type ADA gp120 to CCR5 was less dependent upon CD4 at 4 degrees C than at 37 degrees C. In the absence of the V1/V2 loops, neither removal of the N-linked carbohydrate at asparagine 197 nor lowering of the temperature increased the CD4-independent phenotypes. A CCR5-binding conformation of gp120, achieved by CD4 interaction or by modification of temperature, glycosylation, or variable loops, was preferentially recognized by the monoclonal antibody 48d. These results suggest that the CCR5-binding region of gp120 is occluded by the V1/V2 variable loops, the position of which can be modulated by temperature, CD4 binding, or an N-linked glycan in the V1/V2 stem.  相似文献   

19.
Human immunodeficiency virus type-1 (HIV-1) infection generally provokes antibody responses to the viral envelope glycoprotein. Two major regions of gp120, the third variable (V3) domain and the CD4-binding site, have been identified as neutralization targets. The precise mechanism of HIV-1 neutralization by antibodies against the V3 domain is still unknown. It is shown that by kinetic neutralization studies, one molecule of V3-targeted monoclonal antibody (0.5beta) is enough to neutralize one virion. This antibody, which neutralized more than 99% of the virus, inhibited the binding of the virus to cells by 42%. HIV-1 pseudotyped with G glycoprotein from vesicular stomatitis virus was also neutralized by 0.5beta, suggesting that the antibody did not inhibit the viral attachment but caused some alteration in the envelope. These results indicate that the antibody plays an additional role on steric change of the envelope involved in inhibition of viral entry.  相似文献   

20.
MS8209, an amphotericin B derivative blocking human immunodeficiency virus type 1 (HIV-1) entry after CD4 binding, neutralized the HIV-2 strains EHO and ROD10 but not ROD(CEM). In the V3 domain of gp120, ROD(CEM) differed from ROD10 at two positions (a threonine instead of an isoleucine at position 312 and an arginine instead of a glutamine at position 329), and drug resistance was conferred to HIV-1 by substitution of the ROD(CEM) V3 but not the ROD10 V3. V3 mutations may prevent the interaction of gp120 with MS8209 or modify the mechanism of virus entry, rendering it less accessible to neutralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号