首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
During neonatal and juvenile life, mammalian uteri undergo extensive structural and functional changes, including uterine gland differentiation and development. In sheep and mice, inhibition of neonatal uterine gland development induced by progestin treatment led to a permanent aglandular uterine phenotype and adult infertility, suggesting that this strategy might be useful for sterilizing dogs and other companion animals. The goal of this study was to define temporal patterns of adenogenesis (gland development), cell proliferation, and progesterone and estrogen receptor expression in uteri of neonatal and juvenile dogs as a first step toward determining whether neonatal progestin treatments might be a feasible contraceptive approach in this species. Uteri obtained from puppies at postnatal wk 1, 2, 4, 6, or 8 were evaluated histologically and immunostained for MKI67, a marker of cell proliferation, estrogen receptor-1, and progesterone receptor. Adenogenesis was under way at 1 wk of age, as indicated by the presence of nascent glands beginning to bud from the luminal epithelium, and rapid proliferation of both luminal epithelial and stromal cells. By Week 2, glands were clearly identifiable and proliferation of luminal, glandular, and stromal cells was pronounced. At Week 4, increased numbers of endometrial glands were evident penetrating uterine stroma, even as proliferative activity decreased in all cell compartments as compared with Week 2. Whereas gland development was most advanced at Weeks 6 to 8, luminal, glandular, and stromal proliferation was minimal, indicating that the uterus was nearly mitotically quiescent at this age. Both estrogen receptor-1 and progesterone receptor were expressed consistently in uterine stromal and epithelial cells at all ages examined. In summary, canine uterine adenogenesis was underway by 1 wk of age and prepubertal glandular proliferation was essentially complete by Week 6. These results provided information necessary to facilitate development of canine sterilization strategies based on neonatal progestin treatments designed to permanently inhibit uterine gland development and adult fertility.  相似文献   

4.
To investigate the molecular mechanisms of implantation, we constructed a complementary DNA library of mouse uterus enriched with pregnancy-induced genes by subtractive hybridization and polymerase chain reaction. One of the isolated clones was a part of complementary DNA for the Ly-6A/E. Ly-6A/E is reported to be differentially expressed on hematopoietic stem cells and some lymphoid and nonlymphoid tissues, mediate cell-cell adhesion on lymphoid cells, and associate with cell proliferation and angiogenesis of tumor cells. Northern blot, in situ hybridization, and immunohistochemical analyses demonstrated that the Ly-6A/E mRNA and protein were expressed in the endometrial epithelial cells as well as myometrial cells and vascular endothelial cells in the uterus of nonpregnant mouse. The expression was downregulated in luminal epithelial cells during pregnancy days 1-5, while it was upregulated in decidualized stromal cells around the implanted embryo at the time of implantation. The signals were primarily localized in stromal cells at the mesometrial pole on day 9. The increased expression was also observed in stromal cells of the embryo-transferred uterus and artificially-induced deciduoma, indicating that the expression of Ly-6A/E in the endometrial cells is concurrent with decidualization. These findings suggest that Ly-6A/E plays a role in embryo implantation.  相似文献   

5.
To study the role of epithelial-mesenchymal interactions in myometrial development, uteri from neonatal Balb/c mice 1 to 60 days postpartum were utilized. Intact (untrypsinized) uteri, trypsinized but unseparated uteri, homotypic uterine tissue recombinants (separated-recombined), or uterine mesenchyme alone were grafted beneath the renal capsule of syngeneic female hosts and grown for 1 mo. Uterine mesenchyme from 1-day mice grafted alone produced small amounts of smooth muscle, most of which was associated with vasculature, whereas uterine mesenchyme from older donors possessing a rudimentary myometrium at the time of grafting formed intermediate amounts of myometrium (actin-positive smooth muscle bundles). In contrast, all specimens containing epithelium (intact, trypsinized, and separated-recombined) developed large amounts of myometrium. Uterine epithelia from neonatal through adult stages were equally effective in permissively inducing myometrial development in 1-day uterine mesenchyme. From these data, it is apparent that uterine epithelium plays an important promotional role in the differentiation and possibly the spatial organization of the myometrium.  相似文献   

6.
Both the uterus and vagina develop from the Müllerian duct but are quite distinct in morphology and function. To investigate factors controlling epithelial differentiation and cell proliferation in neonatal uterus and vagina, we focused on Hedgehog (HH) signaling. In neonatal mice, Sonic hh (Shh) was localized in the vaginal epithelium and Indian hh (Ihh) was slightly expressed in the uterus and vagina, whereas all Glioma-associated oncogene homolog (Gli) genes were mainly expressed in the stroma. The expression of target genes of HH signaling was high in the neonatal vagina and in the uterus, it increased with growth. Thus, in neonatal mice, Shh in the vaginal epithelium and Ihh in the uterus and vagina activated HH signaling in the stroma. Tissue recombinants showed that vaginal Shh expression was inhibited by the vaginal stroma and uterine Ihh expression was stimulated by the uterine stroma. Addition of a HH signaling inhibitor decreased epithelial cell proliferation in organ-cultured uterus and vagina and increased stromal cell proliferation in organ-cultured uterus. However, it did not affect epithelial differentiation or the expression of growth factors in organ-cultured uterus and vagina. Thus, activated HH signaling stimulates epithelial cell proliferation in neonatal uterus and vagina but inhibits stromal cell proliferation in neonatal uterus.  相似文献   

7.
为研究蛋白激酶H11基因在生殖系统中的作用,我们采用半定量RT-PCR和原位杂交方法,研究了蛋白激酶H11基因在小鼠中的组织特异性表达,在妊娠初始期胚胎植入位点、妊娠期子宫和胎盘以及正常动情周期子宫中的表达及其受性激素的调节。结果发现:蛋白激酶H11基因在小鼠多种组织中都有表达,在卵巢及子宫等一些生殖相关的组织中表达水平较高;妊娠初始期,蛋白激酶H11基因在小鼠子宫内膜植入位点处有明显的高表达,其mRNA定位于腔上皮细胞和基质细胞中。在动情周期中,蛋白激酶H11基因在动情前期子宫中表达水平较低;卵巢切除模型显示雌激素和孕激素均可显著上调蛋白激酶H11基因的表达。以上结果提示蛋白激酶H11可能参与了胚胎植入过程中腔上皮细胞凋亡和基质细胞增殖与蜕膜化以及动情周期小鼠子宫内膜细胞的功能调节[动物学报51(3):462-468,2005]。  相似文献   

8.
9.
Uterine glands and their secretions are required for conceptus (embryo/fetus and associated placenta) survival and development. In most mammals, uterine gland morphogenesis or adenogenesis is a uniquely postnatal event; however, little is known about the mechanisms governing the developmental event. In sheep, progestin treatment of neonatal ewes permanently ablated differentiation of the endometrial glands. Similarly, progesterone (P4) inhibits adenogenesis in neonatal mouse uterus. Thus, P4 can be used as a tool to discover mechanisms regulating endometrial adenogenesis. Female pups were treated with sesame vehicle alone as a control or P4 from Postnatal Day 2 (PD 2) to PD 10, and reproductive tracts were examined on PD 5, 10, or 20. Endometrial glands were fully developed in control mice by PD 20 but not in P4-treated mice. All other uterine cell types appeared normal. Treatment with P4 stimulated proliferation of the stroma but suppressed proliferation of the luminal epithelium. Microarray analysis revealed that expression of genes were reduced (Car2, Fgf7, Fgfr2, Foxa2, Fzd10, Met, Mmp7, Msx1, Msx2, Wnt4, Wnt7a, Wnt16) and increased (Hgf, Ihh, Wnt11) by P4 in the neonatal uterus. These results support the idea that P4 inhibits endometrial adenogenesis in the developing neonatal uterus by altering expression of morphoregulatory genes and consequently disrupting normal patterns of cell proliferation and development.  相似文献   

10.
Endometrial glands are present in all mammalian uteri and produce secretions that are hypothesized to support conceptus (i.e., embryo/fetus and placental membranes) survival and development. In sheep, endometrial gland morphogenesis occurs postnatally and can be epigenetically ablated by chronic neonatal exposure to a progestin from birth, thereby producing an adult uterine gland knock-out (UGKO) phenotype. This study determined the long-term effects of neonatal progestin exposure on adult ovine reproductive tract structure and function. Neonatal ewes were exposed to norgestomet (Nor) from birth to 32 wk of age. Unexposed ewes served as controls. After puberty, adult Nor-treated (n = 6) and control (n = 6) ewes were repeatedly bred at estrus (Day 0) to intact rams of proven fertility. In contrast to a pregnancy rate of 80% for control ewes, pregnancy was never detected on Day 25 after mating (or thereafter) in bred UGKO ewes. Control and Nor-treated ewes were then bred and necropsied on Day 9. Similar numbers of hatched blastocysts were present in uterine flushings from control and Nor-treated ewes. Weights of the ovaries and cervices were not affected by treatment. No histoarchitectural differences between control and Nor-treated ewes were detected for ovaries, oviducts, cervices, or vaginae. However, uterocervical and uterine weight as well as uterine horn length were less for Nor-treated ewes. The uteri of Nor-treated ewes were devoid of endometrial glands and lacked the stromal delineation characteristic of intercaruncular endometrium in control ewes. Endometrial width, area, and lumenal epithelial length were decreased in uteri from Nor-treated ewes, but myometrial width and morphology were not affected. Expression of a number of mRNAs that are expressed predominantly in the endometrial epithelia was not different between uteri from control and from Nor-treated ewes. Collectively, these results indicate that neonatal exposure of ewes to a progestin from birth appears to only affect development of the uterus and not any extrauterine reproductive tract tissues. The infertility of the UGKO ewes appears to result from a lack of endometrial glands and, by extension, of their secretions that are required to support growth and development of peri-implantation conceptuses.  相似文献   

11.
12.
Rationale: Mechanical stimuli in the microenvironment are considered key regulators of cell function. Clinically, mechanical force (tissue expander) is widely used to regenerate skin for post-burn or trauma repair, implying that mechanical stretching can promote skin cell regeneration and proliferation. However, the underlying mechanism remains unknown.Methods: Microarray analysis was utilized to detect the hub gene. The expression of Cdh1 as examined in cells and tissues by western blot, q-PCR and immunohistochemistry staining respectively. Biological roles of Cdh1 was revealed by a series of functional in vitro and in vivo studies.Results: Microarray analysis identified Cdh1 as a hub gene related to skin regeneration during rat cutaneous mechanical loading. In vitro studies suggested that both mechanical loading and Cdh1 interference induced keratinocyte dedifferentiation and enhanced stemness, promoting cell proliferation and prevent apoptosis. Furthermore, the forkhead box O1/Krüppel-like factor 4 (FOXO1/KLF4) pathway was activated and contributed to the keratinocyte dedifferentiation. In vivo studies showed that mechanical loading and Cdh1 interference facilitated epidermal dedifferentiation and promoted dermal collagen deposition, and that Cdh1 overexpression could block such influence.Conclusions: In this study, we show that E-cadherin (CDH1), a well-known cell-cell adhesion molecule, plays a crucial role in mechanical stretch-induced skin cell regeneration and proliferation. We have shown for the first time the process by which mechanical stress is transmitted to the epidermis and induces a downstream signaling pathway to induce epidermal cells to differentiate. These findings demonstrate that Cdh1-induced keratinocyte dedifferentiation is a crucial event in mechanical stretch-mediated skin regeneration and that Cdh1 may serve as a potential therapeutic target for promoting skin regeneration.  相似文献   

13.
Monoclonal antibodies against the cell surface were produced by immunizing mice with endometrial scrapings prepared from 6-day pregnant rabbits. Spleen cells from an immune mouse were fused with myeloma cells and cultured by standard hybridoma technology methods. Hybridoma supernatants were screened for reaction with the apical epithelial surface by immunohistochemistry on frozen sections of uterus from 6-day pregnant rabbits, and positive colonies were cloned by limiting dilution. Ascites fluid was produced in mice from hybridoma clones that gave a consistent pattern of apical epithelial surface staining through 6 sub-clonings. Antibodies in the ascites fluid were tested by immunohistochemistry on frozen sections of uterus, oviduct, lung, liver and kidney from nonpregnant or 6-day pregnant rabbits. At a dilution of 1:5000, the antibodies recognized an antigen that was specific to the apical surface of luminal but not glandular epithelium of the 6-day pregnant uterus and could not be detected in the nonpregnant uterine epithelium. At higher concentrations of antibody (1:100 to 1:1000), crossreaction was seen with antigens in stromal and myometrial cells of pregnant and nonpregnant uterus. At a dilution of 1:5000, the antibody also crossreacted with some components of lung, liver and kidney but without discriminating between the two reproductive states. In the oviduct, staining of the surface epithelium was specific to the pregnant state. We conclude that this monoclonal antibody has a high affinity for a luminal epithelial cell surface antigen in the reproductive tract of the pregnant rabbit and shows multiple organ reactivity with other tissues that is not affected by pregnancy. This antigen will provide a useful cell surface marker of epithelial differentiation in the progestational reproductive tract.  相似文献   

14.
15.
In many species, endometrial gland adenogenesis occurs neonatally in an ovary- and steroid-independent manner. Chronic exposure of the developing neonatal ovine uterus to norgestomet (NOR) from birth permanently ablates endometrial gland morphogenesis or adenogenesis, creating an adult ovine uterine gland knockout (UGKO) phenotype. This study was conducted to determine the mechanism(s) whereby NOR inhibits adenogenesis in the neonatal ewe. Ewe lambs received no implant or a NOR implant at birth and on postnatal day (PND) 14, and they were necropsied on PND28. Histological analyses of the tracts indicated NOR exposure specifically inhibited endometrial adenogenesis, but no histoarchitectural differences were observed in the oviduct, cervix, or vagina. No effect of NOR treatment was detected on proliferating cell nuclear antigen (PCNA) expression in the endometrial luminal epithelium (LE), stroma, or myometrium. In control (CX) ewes, estrogen receptor alpha (ER-alpha) and progesterone receptor (PR) mRNA and protein were expressed strongly in nascent and proliferating glandular epithelium (GE) but were undetected in epithelium of NOR uteri. Expression of c-met and fibroblast growth factor receptor 2IIIb (FGFR2IIIb) mRNA was detected in the LE and GE of CX uteri. In NOR uteri, c-met was expressed in the LE similar to CX uteri, but FGFR2IIIb mRNA levels were lower than in the LE of CX uteri. Uterine hepatocyte growth factor (HGF), the ligand for c-met, and FGFR2IIIb mRNA expression was substantially lower in NOR ewes, but expression of FGF-7 and FGF-10 mRNAs, ligands for FGFR2IIIb, was unaffected. These results indicate that NOR disrupts endometrial adenogenesis by ablating epithelial ER-alpha expression and altering expression of paracrine growth factors and/or receptors involved in epitheliomesenchymal interactions. Likewise, these mechanisms are proposed to be important regulators of normal uterine gland morphogenesis in the neonate.  相似文献   

16.
Epithelial cells are tightly coupled together through specialized intercellular junctions, including adherens junctions, desmosomes, tight junctions, and gap junctions. A growing body of evidence suggests epithelial cells also directly exchange information at cell-cell contacts via the Eph family of receptor tyrosine kinases and their membrane-associated ephrin ligands. Ligand-dependent and -independent signaling via Eph receptors as well as reverse signaling through ephrins impact epithelial tissue homeostasis by organizing stem cell compartments and regulating cell proliferation, migration, adhesion, differentiation, and survival. This review focuses on breast, gut, and skin epithelia as representative examples for how Eph receptors and ephrins modulate diverse epithelial cell responses in a context-dependent manner. Abnormal Eph receptor and ephrin signaling is implicated in a variety of epithelial diseases raising the intriguing possibility that this cell-cell communication pathway can be therapeutically harnessed to normalize epithelial function in pathological settings like cancer or chronic inflammation.  相似文献   

17.
Since estrogens have vital functions in the uterus but might also contribute to endometrial cancer, we sought to determine the in vitro effects of methyl-piperidino-pyrazole (MPP), raloxifene, and beta-estradiol on Ishikawa and RL-95 endometrial cancer, and ovine luminal endometrial (oLE) cell lines and the in vivo effects of these compounds in the rodent uterus. MPP and raloxifene (1 nM) induced significant apoptosis in the endometrial cancer and oLE cell lines compared to beta-estradiol treated and control cells (P 相似文献   

18.
Ma YY  Fan Y  Bai MK  Zhang JH  He YP  Yu LL  Yue LM 《生理学报》2008,60(4):541-546
本文在体外培养条件下研究卵巢激素诱导小鼠子宫内膜上皮细胞cyclin G1的表达及细胞增殖和细胞周期进程的变化,以探讨孕激素依赖的细胞周期调控因子cyclin G1对子宫内膜上皮细胞增殖的负调控作用.原代培养小鼠子宫内膜上皮细胞,待其生长汇合后分为4组:对照组(C组)、雌激素组(E组)、孕激素组(P组)、雌、孕激素共同作用组(EP组).加入相应激素作用24 h后,用细胞免疫化学方法检测各组细胞cyclin G1的表达水平:四甲基偶氮唑蓝(MTT)比色法检测各组细胞活力,间接观察子宫内膜上皮细胞的增殖情况;用流式细胞仪检测分布在细胞周期各时相的子宫内膜上皮细胞所占百分数.细胞免疫化学结果显示,cyclin G1在C组和E组子宫内膜上皮细胞上无明显表达,而在P组和EP组子宫内膜上皮细胞中表达明显,且定位于细胞核内.MTT法结果显示,与C组相比,E组细胞活力明显增高,而P组和EP组的细胞活力均明显下降,表明雌激素能促进子宫内膜上皮细胞增殖,而孕激素则具有抑制子宫内膜上皮细胞增殖的作用.流式细胞术检测显示,与C组相比,E组中处于S期的子宫内膜上皮细胞百分数增多;P组与EP组中处于S期的子宫内膜上皮细胞百分数明显减少,而处于G1期的细胞百分数和G2/M期的细胞百分数则明显增加.上述结果提示,孕激素依赖的cyclin G1可能通过阻滞细胞周期进程来参与孕激素对子宫内膜上皮细胞增殖的负调控作用.  相似文献   

19.
20.
The success of postnatal uterine morphogenesis dictates, in part, the embryotrophic potential and functional capacity of the adult uterus. The definitive role of Wnt7a in postnatal uterine development and adult function requires a conditional knockout, because global deletion disrupts müllerian duct patterning, specification, and cell fate in the fetus. The Wnt7a-null uterus appears to be posteriorized because of developmental defects in the embryo, as evidenced by the stratified luminal epithelium that is normally found in the vagina and the presence of short and uncoiled oviducts. To understand the biological role of WNT7A after birth and allow tissue-selective deletion of Wnt7a, we generated loxP-flanked exon 2 mice and conditionally deleted Wnt7a after birth in the uterus by crossing them with Pgr(Cre) mice. Morphological examination revealed no obvious differences in the vagina, cervix, oviduct, or ovary. The uteri of Wnt7a mutant mice contained no endometrial glands, whereas all other uterine cell types appeared to be normal. Postnatal differentiation of endometrial glands was observed in control mice, but not in mutant mice, between Postnatal Days 3 and 12. Expression of morphoregulatory genes, particularly Foxa2, Hoxa10, Hoxa11, Msx1, and Wnt16, was disrupted in the Wnt7a mutant uteri. Conditional Wnt7a mutant mice were not fertile. Although embryos were present in uteri of mutant mice on Day 3.5 of pregnancy, blastocyst implantation was not observed on Day 5.5. Furthermore, expression of several genes (Foxa2, Lif, Msx1, and Wnt16) was reduced or absent in adult Wnt7a-deleted uteri on Day 3.5 postmating. These results indicate that WNT7A plays a critical role in postnatal uterine gland morphogenesis and function, which are important for blastocyst implantation and fertility in the adult uterus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号