首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies have substantiated the correlation between reactive oxygen species (ROS) and Sirtuin 1 (SIRT1). Normally, enterovirus 71 (EV71) is associated with severe clinical manifestations and death. However, the effect of EV71 on the induction of cellular death and the interplay between ROS/SIRT1 in cell death has not been confirmed yet. In the current study, an increase in the number of apoptotic cells was observed as soon as the EV71 infection was initiated in cells and mice. Furthermore, EV71 infection also promoted a rise in the levels of three commonly known proinflammatory cytokines, interleukin 1β (IL-1β), IL-6, and tumor necrosis factor-α. During EV71-induced apoptosis in the different cell lines, ROS generation and SIRT1 downregulation were observed. Further investigations showed that the administration of ROS inhibitor, N-acetyl- l -cysteine (NAC), reduced the level of apoptosis and inflammation, reduced EV71 propagation, and increased SIRT1 expression in EV71-infected cells. In addition, combined administration of NAC and EX527 (SIRT1 inhibitor) restored apoptosis in the EV71-infected cells, which was reduced due to NAC. This data demonstrated that ROS generation is positively associated with EV71-induced apoptosis and inflammation, while this effect could be reversed by SIRT1 inhibition. Collectively, we have shown that EV71 induces apoptosis and inflammation by promoting ROS generation and reducing SIRT1 expression.  相似文献   

2.
3.
High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs. We found that exposure of human aortic ECs to HSS significantly increased HO-1 expression; however, this upregulation appeared to be independent of adenosine monophosphate-activated protein kinase, a regulator of HO-1. Furthermore, HSS inhibited the expression of HG-induced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species (ROS) production in ECs. In an EC/SMC co-culture, compared with static conditions, subjecting ECs close to SMCs to HSS and HG significantly suppressed SMC proliferation while increasing the expression of physiological contractile phenotype markers, such as α-smooth muscle actin and serum response factor. Moreover, HSS and HG decreased the expression of vimentin, an atherogenic synthetic phenotypic marker, in SMCs. Transfecting ECs with HO-1-specific small interfering (si)RNA reversed HSS inhibition on HG-induced inflammation and ROS production in ECs. Similarly, reversed HSS inhibition on HG-induced proliferation and synthetic phenotype formation were observed in co-cultured SMCs. Our findings provide insights into the mechanisms underlying EC-SMC interplay during HG-induced metabolic stress. Strategies to promote HSS in the vessel wall, such as continuous exercise, or the development of HO-1 analogs and mimics of the HSS effect, could provide an effective approach for preventing and treating diabetes-related atherosclerotic vascular complications.  相似文献   

4.
目的:探讨白藜芦醇对氧糖剥夺/再灌注(OGD/R)损伤的PCI2细胞的保护作用及其机制。方法:体外培养PCI2细胞,分为对照组,白藜芦醇组,OGD/R组及OGD/R+白藜芦醇组。以改良的噻唑蓝法测定细胞活性,采用AnnexinV—FITC/PI双染法检测细胞的凋亡率,用双氯罗丹明(DHR)检测细胞内活性氧簇(Ros)的水平,采用蛋白印迹法(westemblot)分析SIRTl的蛋白表达情况。结果:与对照组相比,经过OGD/R损伤后,细胞活力显著降低。而在OGD/R的同时给予10μmol/L的白藜芦醇处理。可以明显提高细胞活力。流式细胞仪检测发现,10μmol/L的白藜芦醇可以显著地减少OGD/R引起的细胞凋亡,抑制细胞内的ROS产生。westemblot的结果提示,与对照组比较,白藜芦醇可提高SIRTl的蛋白表达水平。结论:白藜芦醇可以通过抑制ROS的产生和上调SIRTl的表达等机制而发挥其对抗氧糖剥夺/再灌注损伤的神经保护性作用。  相似文献   

5.
This study evaluated the changes in the biomechanical properties of endothelial cells (ECs) induced by neutrophil adhesion and the roles of ICAM-1 and reactive oxygen species (ROS) in modulating these changes. Neutrophil adherence to 24-h TNF-alpha-activated pulmonary microvascular ECs induced an increase in the apparent stiffness of ECs within 2 min, measured with magnetic twisting cytometry. An anti-ICAM-1 Ab blocked the EC stiffening response without inhibiting neutrophil adherence. Moreover, cross-linking ICAM-1 mimicked the stiffening response induced by neutrophils. The neutrophil-induced increase in the apparent stiffness of ECs was inhibited with 1% DMSO (a hydroxyl radical scavenger), allopurinol (a xanthine oxidase inhibitor), or deferoxamine (an iron chelator), suggesting that ROS may be involved in mediating the EC stiffening response. The cellular sources of ROS were determined by measuring the oxidation of dichlorofluorescein. Neutrophil adherence to TNF-alpha-activated ECs induced ROS production only in ECs, and not in neutrophils. This ROS production in ECs was completely prevented by the anti-ICAM-1 Ab and partially inhibited by allopurinol. These results suggest that ICAM-1-mediated signaling events during neutrophil adherence may activate xanthine oxidase, which in turn mediates the ROS production in ECs that leads to stiffening. ROS generated in ECs on neutrophil adherence appear to mediate cytoskeletal remodeling, which may modulate subsequent inflammatory responses.  相似文献   

6.
Endothelial cell (EC) apoptosis is important in vascular injury, repair, and angiogenesis. Homocysteine and/or adenosine exposure of ECs causes apoptosis. Elevated homocysteine or adenosine occurs in disease states such as homocysteinuria and tissue necrosis, respectively. We examined the intracellular signaling mechanisms involved in this pathway of EC apoptosis. Inhibition of protein tyrosine phosphatase (PTPase) attenuated homocysteine- and/or adenosine-induced apoptosis and completely blocked apoptosis induced by the inhibition of S-adenosylhomocysteine hydrolase with MDL-28842. Consistent with this finding, the tyrosine kinase inhibitor genistein enhanced apoptosis in adenosine-treated ECs. Adenosine significantly elevated the PTPase activity in the ECs. Mitogen-activated protein kinase activities were examined to identify possible downstream targets for the upregulated PTPase(s). Extracellular signal-regulated kinase (ERK) 1 activity was slightly elevated in adenosine-treated ECs, whereas ERK2, c-Jun NH(2)-terminal kinase-1, or p38beta activities differed little. The mitogen-activated protein kinase-1 inhibitor PD-98059 enhanced DNA fragmentation, suggesting that increased ERK1 activity is a result but not a cause of apoptosis in adenosine-treated ECs. Adenosine-treated ECs had diminished p38alpha activity compared with control cells; this effect was blunted on PTPase inhibition. These results indicate that PTPase(s) plays an integral role in the induction of EC apoptosis upon exposure to homocysteine and/or adenosine, possibly by the attenuation of p38alpha activity.  相似文献   

7.
8.
Sirtuin 2 (SIRT2), a member of the sirtuin family of proteins, plays an important role in cell survival. However, the biological function of SIRT2 protein is unclear with respect to inflammation and oxidative stress. In this study, we examined the protective effects of SIRT2 on inflammation and oxidative stress-induced cell damage using a cell permeative PEP-1–SIRT2 protein. Purified PEP-1–SIRT2 was transduced into RAW 264.7 cells in a time- and dose-dependent manner and protected against lipopolysaccharide- and hydrogen peroxide (H2O2)-induced cell death and cytotoxicity. Also, transduced PEP-1–SIRT2 significantly inhibited the expression of cytokines as well as the activation of NF-κB and mitogen-activated protein kinases (MAPKs). In addition, PEP-1–SIRT2 decreased cellular levels of reactive oxygen species (ROS) and of cleaved caspase-3, whereas it elevated the expression of antioxidant enzymes such as MnSOD, catalase, and glutathione peroxidase. Furthermore, topical application of PEP-1–SIRT2 to 12-O-tetradecanoylphorbol 13-acetate-treated mouse ears markedly inhibited expression levels of COX-2 and proinflammatory cytokines as well as the activation of NF-κB and MAPKs. These results demonstrate that PEP-1–SIRT2 inhibits inflammation and oxidative stress by reducing the levels of expression of cytokines and ROS, suggesting that PEP-1–SIRT2 may be a potential therapeutic agent for various disorders related to ROS, including skin inflammation.  相似文献   

9.
Shear stress imposed by blood flow is crucial for differentiation of endothelial progenitor cells (EPCs). Histone deacetylase SIRT1 has been shown to play a pivotal role in many physiological processes. However, association of SIRT1 expression with shear stress‐induced EPC differentiation remains to be elucidated. The present study was designed to determine the effect of SIRT1 on EPC differentiation induced by shear stress, and to seek the underlying mechanisms. Human umbilical cord blood‐derived EPCs were exposed to laminar shear stress of 15 dyn/cm2 by parallel plate flow chamber system. Shear stress enhanced EPC differentiation toward endothelial cells (ECs) while inhibited to smooth muscle cells (SMCs). The expressions of phospho‐Akt, SIRT1 and histone H3 acetylation (Ac‐H3) in EPCs were detected after exposure to shear stress for 2, 6, 12, and 24 h, respectively. Shear stress significantly activated Akt phosphorylation, augmented SIRT1 expression and downregulated Ac‐H3. SIRT1 siRNA in EPCs diminished the expression of EC markers, but increased the expression of SMC markers, and resulted in upregulation of Ac‐H3. Whereas, resveratrol, an activator of SIRT1, had the opposite effects on both EPC differentiation and histone H3 acetylation. Wortmannin, an inhibitor of PI3‐kinase, suppressed endothelial differentiation of EPCs, decreased SIRT1, and upregulated Ac‐H3 expression. In addition, SIRT1 promoted tube formation of EPCs in matrix gels. These results provided a mechanobiological basis of shear stress‐induced EPC differentiation into ECs and suggest that PI3k/Akt‐SIRT1‐Ac‐H3 pathway is crucial in such a process. J. Cell. Biochem. 113: 3663–3671, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.

Aims

We previously demonstrated that resveratrol (RSV) administration causes cardiac stromal cell-derived factor (SDF)-1 upregulation and can enhance the mobilization of stem cells in mice with acute myocardial infarction (AMI). However, the upstream signal transduction involved in SDF-1 regulation in the setting of AMI and RSV administration remains unclear. Because RSV is a sirtuin 1 (SIRT1) activator and SIRT proteins act as deacetylases, we investigated the role of SIRT1 in SDF-1 upregulation and its subsequent effects.

Methods and Results

In vitro experiments with H9C2 cardiomyocytes under hypoxia and serum-deprivation conditions showed that p53 acted upstream of SDF-1. RSV could not regulate SDF-1 effectively after SIRT1 silencing, indicating that it is dependent on SIRT1. Subsequently, male C57BL/6 mice were divided into four groups: 1) sham, 2) MI, 3) MI+RSV, and 4) MI+RSV plus nicotinamide, an inhibitor of the deacetylase activity of SIRT (MI+RSV+NAM). Compared with the sham mice, AMI caused a slight increase in the cardiac p53 level and resulted in significant SIRT1 downregulation and p53 acetylation or activation. Compared with the MI mice, MI+RSV administration improved the cardiac SDF-1 level and reversed the reduction of SIRT1 and the activation of p53. Furthermore, we observed less cardiac dysfunction in MI+RSV mice and determined that NAM abolished the effects of RSV.

Conclusions

RSV enhances cardiac SDF-1 excretion after AMI partially through a SIRT1 normalization/p53 inactivation pathway.  相似文献   

11.
12.
Endothelial senescence is believed to constitute the initial pathogenesis of the atherosclerotic cardiovascular disease (ASCVD). MicroRNA-335-5p (miR-335-5p) expression is significantly up-regulated in oxidative stress-induced endothelial cells (ECs). Sirtuin7 (SIRT7) is considered to prevent EC senescence, yet data on its response to ASCVD risk factors are limited. The present study analyzed the elevated levels of miR-335-5p and the decreased levels of SIRT7 in human umbilical vein endothelial cells (HUVECs), and found that high glucose, tumor necrosis factor-α (TNF-α), and H2O2 are the three contributing factors that induced cellular senescence. The current study also assessed premature endothelial senescence and decreased proliferation, adhesion, migration, and nitric oxide (NO) secretion in HUVECs with these risk factors together with SIRT7–siRNA transfection. It found that the miR-335-5p inhibitor attenuated the down-regulation of SIRT7 expression induced by oxidative stress in HUVECs, and SIRT7 overexpression exerts a rescue effect against miR-335-5p-induced endothelial dysfunction. Furthermore, the direct binding of miR-335-5p to SIRT7 was observed in human embryonic kidney cells 293T (HEK 293T). Therefore, it can be inferred that miR-335-5p down-regulates the expression of SIRT7 in human cells. Current findings may provide deeper insights into the underlying mechanisms of endothelial senescence and potential therapeutic targets of ASCVD as well as other age-related diseases.  相似文献   

13.
The silent information regulator 2 (Sir2) family of proteins (sirtuins or SIRTs), which belong to class III histone/protein deacetylases, have been implicated in calorie restriction, aging, and inflammation. We hypothesized that cigarette smoke-mediated proinflammatory cytokine release is regulated by SIRT1 by its interaction with NF-kappaB in a monocyte-macrophage cell line (MonoMac6) and in inflammatory cells of rat lungs. Cigarette smoke extract (CSE) exposure to MonoMac6 cells caused dose- and time-dependent decreases in SIRT1 activity and levels, which was concomitant to increased NF-kappaB-dependent proinflammatory mediator release. Similar decrements in SIRT1 were also observed in inflammatory cells in the lungs of rats exposed to cigarette smoke as well as with increased levels of several NF-kappaB-dependent proinflammatory mediators in bronchoalveolar lavage fluid and in lungs. Sirtinol, an inhibitor of SIRT1, augmented, whereas resveratrol, an activator of SIRT1, inhibited CSE-mediated proinflammatory cytokine release. CSE-mediated inhibition of SIRT1 was associated with increased NF-kappaB levels. Furthermore, we showed that SIRT1 interacts with the RelA/p65 subunit of NF-kappaB, which was disrupted by cigarette smoke, leading to increased acetylation RelA/p65 in MonoMac6 cells. Thus our data show that SIRT1 regulates cigarette smoke-mediated proinflammatory mediator release via NF-kappaB, implicating a role of SIRT1 in sustained inflammation and aging of the lungs.  相似文献   

14.
We previously reported that high glucose treated cultured endothelial cells (ECs) showed intercellular gaps by transmission electron microscopy (TEM). These gaps were abrogated with insulin and/or heparin treatment. Our aims were to assess the severity of injury in ECs treated with high glucose for variable duration, and to further study the protective effects of insulin and/or heparin. Cells were also treated with L-buthionine sulfoximine (BSO), a glutathione inhibitor, to help understand the mechanism of high glucose injury. Primary porcine ECs were treated with high glucose (30 mM) for 2, 6 or 10 days; and glucose plus insulin (1 U/ml), glucose plus heparin (5 microg/ml), glucose plus insulin plus heparin for 6 days. ECs were treated with BSO (0.001-0.05 mM) for 2 days. Pellets from trypsinized cells were processed for TEM. High glucose treatment revealed apoptosis or necrosis showing variable cell size, abnormal nuclei, condensation of nuclear chromatin, few mitochondria, cell membrane disruption and needle-shaped structures. Changes increased with duration of exposure. In high glucose plus heparin or insulin treated cultures at least one-half of the cells appeared normal. Most ECs were intact when treated with high glucose plus insulin plus heparin. BSO treatment showed dose-dependent changes with low doses showing apoptosis whereas higher doses revealed necrosis similar to high glucose treatment for 6 or 10 days. High glucose-induced EC injury increased with duration of exposure. These data demonstrate that high glucose injury resembles that of BSO treatment, suggesting that glutathione depletion may be involved in EC injury. Insulin and/or heparin protect against high glucose-induced injury.  相似文献   

15.
Many tumor cells are capable of migrating through endothelial cell (EC) junctions and disintegrating sub-endothelial extracellular matrix to achieve extravasation. We demonstrate in this study that certain solid tumor cells can induce EC apoptosis to facilitate their escape from the circulation. The EC apoptosis is triggered by elevated intracellular reactive oxygen species (ROS) levels and direct contacts with tumor cells are required. Treating ECs with antioxidants, such as ascorbate and N-acetyl-L-cysteine (NAC), and a glutathione precursor can rescue the ECs from tumor-induced apoptosis and reduce the number of tumor cells migrating across endothelial barriers. NAD(P)H oxidase was identified as the major ROS producer in the event since inhibitors and small interference RNA specific to the enzyme could abrogate the tumor-induced ROS production and hence EC death. This study also provides evidence showing that the interaction between tumor and EC increases intracellular Ca(2+) concentration and activates protein kinase C (PKC) activity, which leads to NAD(P)H oxidase activation through the serine-phosphorylation of p47(phox) subunit. These findings suggest that blocking the tumor-induced EC apoptosis is a potential way to prevent tumor metastasis.  相似文献   

16.
Nuclear tumor suppressor p53 transactivates proapoptotic genes or antioxidant genes depending on stress severity, while cytoplasmic p53 induces mitochondrial-dependent apoptosis without gene transactivation. Although SIRT1, a p53 deacetylase, inhibits p53-mediated transactivation, how SIRT1 regulates these p53 multifunctions is unclear. Here we show that SIRT1 blocks nuclear translocation of cytoplasmic p53 in response to endogenous reactive oxygen species (ROS) and triggers mitochondrial-dependent apoptosis in mouse embryonic stem (mES) cells. ROS generated by antioxidant-free culture caused p53 translocation into mitochondria in wild-type mES cells but induced p53 translocation into the nucleus in SIRT1(-/-) mES cells. Endogenous ROS triggered apoptosis of wild-type mES through mitochondrial translocation of p53 and BAX but inhibited Nanog expression of SIRT1(-/-) mES, indicating that SIRT1 makes mES cells sensitive to ROS and inhibits p53-mediated suppression of Nanog expression. Our results suggest that endogenous ROS control is important for mES cell maintenance in culture.  相似文献   

17.
Endothelial dysfunction contributes to diabetic macrovascular complications, resulting in high mortality. Recent findings demonstrate a pathogenic role of P53 in endothelial dysfunction, encouraging the investigation of the effect of P53 inhibition on diabetic endothelial dysfunction. Thus, high glucose (HG)‐treated endothelial cells (ECs) were subjected to pifithrin‐α (PFT‐α)—a specific inhibitor of P53, or P53‐small interfering RNA (siRNA), both of which attenuated the HG‐induced endothelial inflammation and oxidative stress. Moreover, inhibition of P53 by PFT‐α or P53‐siRNA prohibited P53 acetylation, decreased microRNA‐34a (miR‐34a) level, leading to a dramatic increase in sirtuin 1 (SIRT1) protein level. Interestingly, the miR‐34a inhibitor (miR‐34a‐I) and PFT‐α increased SIRT1 protein level and alleviated the HG‐induced endothelial inflammation and oxidative stress to a similar extent; however, these effects of PFT‐α were completely abrogated by the miR‐34a mimic. In addition, SIRT1 inhibition by EX‐527 or Sirt1‐siRNA completely abolished miR‐34a‐I's protection against HG‐induced endothelial inflammation and oxidative stress. Furthermore, in the aortas of streptozotocin‐induced diabetic mice, both PFT‐α and miR‐34a‐I rescued the inflammation, oxidative stress and endothelial dysfunction caused by hyperglycaemia. Hence, the present study has uncovered a P53/miR‐34a/SIRT1 pathway that leads to endothelial dysfunction, suggesting that P53/miR‐34a inhibition could be a viable strategy in the management of diabetic macrovascular diseases.  相似文献   

18.
19.
Endothelial‐mesenchymal transition (EndMT) plays a pivotal role in organ fibrosis. This study examined the effect of SIRT1 on transforming growth factor beta (TGF‐β)‐induced EndMT in human endothelial cells (ECs) and its probable molecular mechanism. We assessed EndMT by immunofluorescence staining, quantitative real‐time polymerase chain reaction, Western blotting, and migration and invasion assays. Adenovirus was used to overexpress or knockdown SIRT1 in ECs. The regulatory relationship between SIRT1 and Smad4 was analyzed by coimmunoprecipitation assay. We found that SIRT1 was decreased in TGF‐β‐induced EndMT, and SIRT1 inhibited TGF‐β‐induced EndMT through deacetylating Smad4. Our findings suggest that SIRT1 has an important role in inhibiting EndMT by regulating the TGF‐β/Smad4 pathway in human ECs and, thus, protecting against fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号