首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhang W  Wang X  Chen T 《Cellular signalling》2012,24(5):1037-1046
Our recent study have shown that resveratrol (RV), a natural plant polyphenol found in red grape skins as well as other food product, induced apoptosis via the downstream factors, caspase-independent AIF and to lesser extent caspase-9, of intrinsic apoptosis pathway in human lung adenocarcinoma (ASTC-a-1) cells. This report is designed to explore the roles of the upstream mediators of the intrinsic pathway, such as Bak/Bax, Bim, Puma and Noxa, during RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1 and A549) cell lines. RV treatment remarkably induced the activation of Bak but not Bax, and silencing Bak but not Bax by shRNA almost completely prevented RV-induced cell death, mitochondrial dysfunction and also largely prevented RV-induced AIF release, demonstrating the preferential engagement of Bak but not Bax during RV-induced apoptosis. In addition, although RV treatment induced a significant degradation of Mcl-1, knockdown of Mcl-1 by shRNA only modestly increased RV-induced Bak activation. Interestingly, silencing Bim but not Puma and Noxa remarkably attenuated RV-induced cell death, loss of mitochondrial membrane potential, and Bak activation, suggesting the important roles of Bim. Collectively, our findings for the first time demonstrate that RV induces apoptosis dominantly via a Bak- but not Bax-mediated AIF-dependent mitochondrial apoptotic signaling pathway in which Bim but not Puma and Noxa may supply the force to trigger Bak activation and subsequent apoptosis in both ASTC-a-1 and A549 cell lines.  相似文献   

2.
This report is designed to explore the roles of caspase-8, -9 and -3 in artemisinin (ARTE)-induced apoptosis in non-small cell lung cancer cells (A549 cells). ARTE induced reactive oxygen species (ROS)-mediated apoptosis in dose- and time-dependent fashion. Although ARTE treatment did not induce Bid cleavage and significant loss of mitochondrial membrane potential, it induced release of Smac and AIF but not cytochrome c from mitochondria, and silencing of Bak but not Bax significantly prevented ARTE-induced cytotoxicity. Moreover, ARTE treatment induced ROS-dependent activation of caspase-9, -8 and -3. Of the utmost importance, silencing or inhibiting any one of caspase-8, -9 and -3 almost completely prevented ARTE-induced activation of all the three caspases and remarkably abrogated the cytotoxicity of ARTE, suggesting that ARTE triggered an amplification activation loop among caspase-9, -8 and -3. Collectively, our data demonstrate that ARTE induces a ROS-mediated amplification activation loop among caspase-9, -8 and -3 to dominantly mediate the apoptosis of A549 cells.  相似文献   

3.
The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak.  相似文献   

4.
In the p53-deficient human B lymphoma Namalwa cell line that quickly undergoes apoptosis after DNA topoisomerase I inhibitor (camptothecin, CPT) treatment, we observed rapid and slight induction of the pro-apoptotic BH3-only Bik, Bim-EL, Bim-L and Bim-S proteins. In contrast, the expression levels of Bad and multidomain Bax-alpha and Bak remained mostly unchanged after CPT treatment. However, multiple pro-apoptotic proteins, including Bax-alpha, Bak, Bik, Bim-EL and Bim-L, translocated rapidly to the mitochondria after CPT treatment. Gel filtration chromatography experiments demonstrated that somes of the pro-apoptotic proteins assemble themselves into high molecular weight protein complexes. The protein composition of these oligomers was further analyzed by co-immunoprecipitation experiments performed on highly purified mitochondrial fractions, which revealed the formation of Bax/Bak, Bax/VDAC1, Bak/VDAC1, Bim/VDAC1 and Bim/Bcl-2 complexes after DNA damage induction. Thus, it appeared that induction, mitochondrial translocation and assembly in multimeric protein complexes of several pro-apoptotic members of the Bcl-2 family correlated with the rapid activation of apoptosis in a p53-independent pathway after CPT-mediated DNA strand breaks.  相似文献   

5.
Resveratrol, a naturally occurring phytoalexin, is known to induce apoptosis in multiple cancer cell types, but the underlying molecular mechanisms remain unclear. Here, we show that resveratrol induced p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated translocation of Bax to mitochondria where it underwent oligomerization to initiate apoptosis. Resveratrol treatment promoted interaction between Bax and XIAP in the cytosol and on mitochondria, suggesting that XIAP plays a critical role in the activation and translocation of Bax to mitochondria. This process did not involve p53 but required accumulation of Bim and t-Bid on mitochondria. Bax primarily underwent homo-oligomerization on mitochondria and played a major role in release of cytochrome c to the cytosol. Bak, another key protein that regulates the mitochondrial membrane permeabilization, did not interact with p53 but continued to associate with Bcl-xL. Thus, the proapoptotic function of Bak remained suppressed during resveratrol-induced apoptosis. Caspase-9 silencing inhibited resveratrol-induced caspase activation, whereas caspase-8 knockdown did not affect caspase activity, suggesting that resveratrol induces caspase-9-dependent apoptosis. Together, our findings characterize the molecular mechanisms of resveratrol-induced caspase activation and subsequent apoptosis in cancer cells.  相似文献   

6.
Bcl‐2 family proteins are critical for the regulation of apoptosis, with the pro‐apoptotic members Bax essential for the release of cytochrome c from mitochondria in many instances. However, we found that Bax was activated after mitochondrial depolarization and the completion of cytochrome c release induced by photodynamic therapy (PDT) with the photosensitizer Photofrin in human lung adenocarcinoma cells (ASTC‐a‐1). Besides, knockdown of Bax expression by gene silencing had no effect on mitochondrial depolarization and cytochrome c release, indicating that Bax makes no contribution to mitochondrial outer membrane permeabilization (MOMP) following PDT. Further study revealed that Bax knockdown only slowed down the speed of cell death induced by PDT, indicating that Bax is not essential for PDT‐induced apoptosis. The fact that Bax knockdown totally inhibited the mitochondrial accumulation of dynamin‐related protein (Drp1) and Drp1 knockdown attenuated cell apoptosis suggest that Bax can promote PDT‐induced apoptosis through promoting Drp1 activation. Besides, Drp1 knockdown also failed to inhibit PDT‐induced cell death finally, indicating that Bax‐mediated Drp1's mitochondrial translocation is not essential for PDT‐induced cell apoptosis. On the other hand, we found that protein kinase Cδ (PKCδ), Bim L and glycogen synthase kinase 3β (GSK3β) were activated upon PDT treatment and might contribute to the activation of Bax under the condition. Taken together, Bax activation is not essential for MOMP but essential for Drp1‐mediated mitochondrial fission during the apoptosis caused by Photofrin‐PDT. J. Cell. Physiol. 226: 530–541, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
A pivotal step in the mitochondrial pathway of apoptosis is activation of Bak and Bax, although the molecular mechanism remains controversial. To examine whether mitochondrial apoptosis can be induced by just a lack of antiapoptotic Bcl-2-like proteins or requires direct activators of the BH3-only proteins including Bid and Bim, we studied the molecular requisites for platelet apoptosis induced by Bcl-xL deficiency. Severe thrombocytopenia induced by thrombocyte-specific Bcl-xL knock-out was fully rescued in a Bak and Bax double knock-out background but not with single knock-out of either one. In sharp contrast, deficiency of either Bid, Bim, or both did not alleviate thrombocytopenia in Bcl-xL knock-out mice. An in vitro study revealed that ABT-737, a Bad mimetic, induced platelet apoptosis in association with a conformational change of the amino terminus, translocation from the cytosol to mitochondria, and homo-oligomerization of Bax. ABT-737-induced Bax activation and apoptosis were also observed in Bid/Bim-deficient platelets. Human platelets, upon storage, underwent spontaneous apoptosis with a gradual decline of Bcl-xL expression despite a decrease in Bid and Bim expression. Apoptosis was attenuated in Bak/Bax-deficient or Bcl-xL-overexpressing platelets but not in Bid/Bim-deficient platelets upon storage. In conclusion, platelet lifespan is regulated by a fine balance between anti- and proapoptotic multidomain Bcl-2 family proteins. Despite residing in platelets, BH3-only activator proteins Bid and Bim are dispensable for Bax activation and mitochondrial apoptosis.  相似文献   

8.
Zhao L  He F  Liu H  Zhu Y  Tian W  Gao P  He H  Yue W  Lei X  Ni B  Wang X  Jin H  Hao X  Lin J  Chen Q 《The Journal of biological chemistry》2012,287(2):1054-1065
Overwhelming evidence indicates that Bax and Bak are indispensable for mediating cytochrome c release from mitochondria during apoptosis. Here we report a Bax/Bak-independent mechanism of cytochrome c release and apoptosis. We identified a natural diterpenoid compound that induced apoptosis in bax/bak double knock-out murine embryonic fibroblasts and substantially reduced the tumor growth from these cells implanted in mice. Treatment with the compound significantly increased expression of Bim, which migrated to mitochondria, altering the conformation of and forming oligomers with resident Bcl-2 to induce cytochrome c release and caspase activation. Importantly, purified Bim and Bcl-2 proteins cooperated to permeabilize a model mitochondrial outer membrane; this was accompanied by oligomerization of these proteins and deep embedding of Bcl-2 in the membrane. Therefore, the diterpenoid compound induces a structural and functional conversion of Bcl-2 through Bim to permeabilize the mitochondrial outer membrane, thereby inducing apoptosis independently of Bax and Bak. Because Bcl-2 family proteins play important roles in cancer development and relapse, this novel cell death mechanism can be explored for developing more effective anticancer therapeutics.  相似文献   

9.
Bax and Bak comprise the mitochondrial gateway for apoptosis induced by diverse stimuli. Loss of both bax and bak is necessary to block cell death induced by such stimuli, indicating a great degree of functional overlap between Bax and Bak. Apoptosis is the major intrinsic pathway that limits the oncogenic potential of Myc. Using a switchable mouse model of Myc-induced apoptosis in pancreatic beta cells, we have shown that Myc induces apoptosis in vivo exclusively through Bax but not Bak. Furthermore, blockade of Myc-induced apoptosis by the inactivation of Bax, but not Bak, eliminates all restraints to the oncogenic potential of Myc, allowing the rapid and synchronous progression of invasive, angiogenic tumors.  相似文献   

10.
The present studies were performed to determine whether lysosomal permeabilization contributes to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity and to reconcile a role for lysosomes with prior observations that Bcl-2 family members regulate TRAIL-induced apoptosis. In KMCH cholangiocarcinoma cells stably expressing Mcl-1 small interference RNA (siRNA), treatment with TRAIL induced a redistribution of the cathepsin B from lysosomes to the cytosol. Pharmacological and small hairpin RNA-targeted inhibition of cathepsin B attenuated TRAIL-mediated apoptosis as assessed by morphological, biochemical, and clonogenic assays. Neither Bid siRNA nor Bak siRNA prevented cathepsin B release. In contrast, treatment of the cells with Bim siRNA or the JNK inhibitor SP600125 attenuated lysosomal permeabilization and cell death. Moreover, Bim and active Bax co-localized to lysosomes in TRAIL-treated cells in a JNK-dependent manner, and Bax siRNA reduced TRAIL-induced lysosomal permeabilization and cell death. Finally, BH3 domain peptides permeabilized isolated lysosomes in the presence of Bax. Collectively, these data suggest that TRAIL can trigger an apoptotic pathway that involves JNK-dependent activation of Bim, which in turn induces Bax-mediated permeabilization of lysosomes.  相似文献   

11.
Inhibition of translation plays a role in apoptosis induced by a variety of stimuli, but the mechanism by which it promotes apoptosis has not been established. We have investigated the hypothesis that selective degradation of anti-apoptotic regulatory protein(s) is responsible for apoptosis resulting from translation inhibition. Induction of apoptosis by cycloheximide was detected within 2-4 h and blocked by proteasome inhibitors, indicating that degradation of short-lived protein(s) was required. Caspase inhibition and overexpression of Bcl-x(L) blocked cycloheximide-induced apoptosis. In addition, cycloheximide induced rapid activation of Bak and Bax, which required proteasome activity. Mcl-1 was degraded by the proteasome with a half-life of approximately 30 min following inhibition of protein synthesis, preceding Bak/Bax activation and the onset of apoptosis. Overexpression of Mcl-1 blocked apoptosis induced by cycloheximide, whereas RNA interference knockdown of Mcl-1 induced apoptosis. Knockdown of Bim and Bak, downstream targets of Mcl-1, inhibited cycloheximide-induced apoptosis, as did knockdown of Bax. Apoptosis resulting from inhibition of translation thus involves the rapid degradation of Mcl-1, leading to activation of Bim, Bak, and Bax. Because of its rapid turnover, Mcl-1 may serve as a convergence point for signals that affect global translation, coupling translation to cell survival and the apoptotic machinery.  相似文献   

12.
Mitochondrial apoptosis regulates survival and development of hematopoietic cells. Prominent roles of some Bcl-2-family members in this regulation have been established, for instance for pro-apoptotic Bim and anti-apoptotic Mcl-1. Additional, mostly smaller roles are known for other Bcl-2-members but it has been extremely difficult to obtain a comprehensive picture of the regulation of mitochondrial apoptosis in hematopoietic cells by Bcl-2-family proteins. We here use a system of mouse ‘conditionally immortalized’ lymphoid-primed hematopoietic progenitor (LMPP) cells that can be differentiated in vitro to pro-B cells, to analyze the importance of these proteins in cell survival. We established cells deficient in Bim, Noxa, Bim/Noxa, Bim/Puma, Bim/Bmf, Bax, Bak or Bax/Bak and use specific inhibitors of Bcl-2, Bcl-XL and Mcl-1 to assess their importance. In progenitor (LMPP) cells, we found an important role of Noxa, alone and together with Bim. Cell death induced by inhibition of Bcl-2 and Bcl-XL entirely depended on Bim and could be implemented by Bax and by Bak. Inhibition of Mcl-1 caused apoptosis that was independent of Bim but strongly depended on Noxa and was completely prevented by the absence of Bax; small amounts of anti-apoptotic proteins were co-immunoprecipitated with Bim. During differentiation to pro-B cells, substantial changes in the expression of Bcl-2-family proteins were seen, and Bcl-2, Bcl-XL and Mcl-1 were all partially in complexes with Bim. In differentiated cells, Noxa appeared to have lost all importance while the loss of Bim and Puma provided protection. The results strongly suggest that the main role of Bim in these hematopoietic cells is the neutralization of Mcl-1, identify a number of likely molecular events during the maintenance of survival and the induction of apoptosis in mouse hematopoietic progenitor cells, and provide data on the regulation of expression and importance of these proteins during differentiation along the B cell lineage.Subject terms: Apoptosis, Immune cell death  相似文献   

13.
Interferon-alpha (IFN-alpha) has been used for the last 20 years in the maintenance therapy of multiple myeloma (MM), though it is only effective in some patients. Congruent with this, IFN-alpha induces apoptosis in some MM cell lines. Understanding the mechanism of IFN-alpha-induced apoptosis could be useful in establishing criteria of eligibility for therapy. Here we show that IFN-alpha-induced apoptosis in the MM cell lines U266 and H929 was completely blocked by a specific inhibitor of Jak1. The mTOR inhibitor rapamycin mitigated apoptosis in U266 but potentiated it in H929 cells. IFN-alpha induced PS exposure, DeltaPsi(m) loss and pro-apoptotic conformational changes of Bak, but not of Bax, and was fully prevented by Mcl-1 overexpression in U266 cells. IFN-alpha treatment caused the release of cytochrome c from mitochondria to cytosol and consequently, a limited proteolytic processing of caspases. Apoptosis induced by IFN-alpha was only slightly prevented by caspase inhibitors. Levels of the BH3-only proteins PUMA and Bim increased during IFN-alpha treatment. Bim increase and apoptosis was prevented by transfection with the siRNA for Bim. PUMA-siRNA transfection reduced electroporation-induced apoptosis but had no effect on apoptosis triggered by IFN-alpha. The potentiating effect of rapamycin on apoptosis in H929 cells was associated to an increase in basal and IFN-alpha-induced Bim levels. Our results indicate that IFN-alpha causes apoptosis in myeloma cells through a moderate triggering of the mitochondrial route initiated by Bim and that mTOR inhibitors may be useful in IFN-alpha maintenance therapy of certain MM patients.  相似文献   

14.
Alkylating DNA damage induces a necrotic type of programmed cell death through the poly(ADP-ribose) polymerases (PARP) and apoptosis-inducing factor (AIF). Following PARP activation, AIF is released from mitochondria and translocates to the nucleus, where it causes chromatin condensation and DNA fragmentation. By employing a large panel of gene knockout cells, we identified and describe here two essential molecular links between PARP and AIF: calpains and Bax. Alkylating DNA damage initiated a p53-independent form of death involving PARP-1 but not PARP-2. Once activated, PARP-1 mediated mitochondrial AIF release and necrosis through a mechanism requiring calpains but not cathepsins or caspases. Importantly, single ablation of the proapoptotic Bcl-2 family member Bax, but not Bak, prevented both AIF release and alkylating DNA damage-induced death. Thus, Bax is indispensable for this type of necrosis. Our data also revealed that Bcl-2 regulates N-methyl-N'-nitro-N'-nitrosoguanidine-induced necrosis. Finally, we established the molecular ordering of PARP-1, calpains, Bax, and AIF activation, and we showed that AIF downregulation confers resistance to alkylating DNA damage-induced necrosis. Our data shed new light on the mechanisms regulating AIF-dependent necrosis and support the notion that, like apoptosis, necrosis could be a highly regulated cell death program.  相似文献   

15.

Background

We previously identified curcumin as a potent inducer of fibroblast apoptosis, which could be used to treat hypertrophic scar formation. Here we investigated the underlying mechanism of this process.

Principal Findings

Curcumin-induced apoptosis could not be blocked by caspase-inhibitors and we could not detect any caspase-3/7 activity. Curcumin predominantly induced mitochondria-mediated ROS formation and stimulated the expression of the redox-sensitive pro-apoptotic factor p53. Inhibition of the pro-apoptotic signaling enzyme glycogen synthase kinase-3β (GSK-3β) blocked curcumin-induced apoptosis. Apoptosis was associated with high molecular weight DNA damage, a possible indicator of apoptosis-inducing factor (AIF) activity. Indeed, curcumin caused nuclear translocation of AIF, which could be blocked by the antioxidant N-acetyl cysteine. We next investigated how AIF is effluxed from mitochondria in more detail. The permeability transition pore complex (PTPC), of which the voltage-dependent anion channel (VDAC) is a component, could be involved since the VDAC-inhibitor DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid) efficiently blocked AIF translocation. However, PTPC is not involved in AIF release since cyclosporine A, a specific inhibitor of the complex did not block apoptosis. Alternatively, the pro-apoptotic protein Bax could have formed mitochondrial channels and interacted with VDAC. Curcumin caused mitochondrial translocation of Bax, which was blocked by DIDS, suggesting a Bax-VDAC interaction. Interestingly, ceramide channels can also release apoptogenic factors from mitochondria and we found that addition of ceramide induced caspase-independent apoptosis. Surprisingly, this process could also be blocked by DIDS, suggesting the concerted action of Bax, VDAC and ceramide in the efflux of AIF from the mitochondrion.

Conclusions

Curcumin-induced fibroblast apoptosis is totally caspase-independent and relies on the mitochondrial formation of ROS and the subsequent nuclear translocation of AIF, which is released from a mitochondrial pore that involves VDAC, Bax and possibly ceramides. The composition of the AIF-releasing channel seems to be much more complex than previously thought.  相似文献   

16.
Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways.  相似文献   

17.
Bax-dependent regulation of Bak by voltage-dependent anion channel 2   总被引:4,自引:0,他引:4  
Many studies have demonstrated a critical role of Bax in mediating apoptosis, but the role of Bak in regulating cancer cell apoptotic sensitivities in the presence or absence of Bax remains incompletely understood. Using isogenic cells with defined genetic deficiencies, here we show that in response to intrinsic, extrinsic, and endoplasmic reticulum stress stimuli, HCT116 cells show clear-cut apoptotic sensitivities in the order of Bax+/Bak+ > Bax+/Bak- > Bax-/Bak+ > Bax-/Bak-. Small interference RNA-mediated knockdown of Bak in Bax-deficient cells renders HCT116 cells completely resistant to apoptosis induction. Surprisingly, however, Bak knockdown in Bax-expressing cells only slightly affects the apoptotic sensitivities. Bak, like Bax, undergoes the N terminus exposure upon apoptotic stimulation in both Bax-expressing and Bax-deficient cells. Gel filtration, chemical cross-linking, and co-immunoprecipitation experiments reveal that different from Bax, which normally exists as monomers in unstimulated cells and is oligomerized by apoptotic stimulation, most Bak in unstimulated HCT116 cells exists in two distinct protein complexes, one of which contains voltage-dependent anion channel (VDAC) 2. During apoptosis, Bak and Bax form both homo- and hetero-oligomeric complexes that still retain some VDAC-2. However, the oligomeric VDAC-2 complexes are diminished, and Bak does not interact with VDAC-2 in Bax-deficient HCT116 cells. These results highlight VDAC-2 as a critical inhibitor of Bak-mediated apoptotic responses.  相似文献   

18.
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.  相似文献   

19.
Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria.  相似文献   

20.
Previously we have shown that interferon (IFN)-α induced apoptosis is predominantly mediated by the upregulation of tumor necrosis factor related apoptosis-inducing ligand (TRAIL) via the caspase-8 pathway. It was also shown that recruitment of mitochondria in IFN-α induced apoptosis involves the cleavage of BH3 interacting domain death agonist (Bid) to truncated Bid (tBid). In the present study, we demonstrate that tBid induced by IFN-α2a activates mitochondrial Bak to trigger the loss of mitochondrial membrane integrity, consequently causing release of apoptosis-inducing factor (AIF) in ovarian cancer cells, OVCAR3. AIF translocates from the mitochondria to the nucleus and induces nuclear fragmentation and cell death. Both a small molecule Bid inhibitor (BI-6C9) or Bid-RNA interference (RNAi) preserved mitochondrial membrane potential, prevented nuclear translocation of AIF, and abrogated IFN-α2a-induced cell death. Cell death induced by tBid was inhibited by AIF-RNAi, indicating that caspase-independent AIF signaling is the main pathway through which Bid mediates cell death. This was further supported by experiments showing that BI-6C9 did not prevent the release of cytochrome c from mitochondria to cytosol, while the release of AIF was prevented. In conclusion, IFN-α2a-induced apoptosis is mediated via the mitochondria-associated pathway involving the cleavage of Bid followed by AIF release that involves Bak activation and translocation of AIF from the mitochondria to the nucleus in OVCAR3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号