首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transport of cholesterol into the mitochondria is the rate-determining, hormone-sensitive step in steroid biosynthesis. Here we report that the mechanism underlying mitochondrial cholesterol transport involves the formation of a macromolecular signaling complex composed of the outer mitochondrial membrane translocator protein (TSPO), previously known as peripheral-type benzodiazepine receptor; the TSPO-associated protein PAP7, which binds and brings to mitochondria the regulatory subunit RIalpha of the cAMP-dependent protein kinase (PKARIalpha); and the hormone-induced PKA substrate, steroidogenic acute regulatory protein (StAR). Hormone treatment of MA-10 Leydig cells induced the co-localization of TSPO, PAP7, PKARIalpha, and StAR in mitochondria, visualized by confocal microscopy, and the formation in living cells of a high molecular weight multimeric complex identified using photoactivable amino acids. The hormone-induced recruitment of exogenous TSPO in this complex was found to parallel the increased presence of 7-azi-5alpha-cholestan-3beta-ol in the samples. Co-expression of Tspo, Pap7, PkarIalpha, and Star genes resulted in the stimulation of steroid formation in both steroidogenic MA-10 and non-steroidogenic COS-F2-130 cells that were engineered to metabolize cholesterol. Disruption of these protein-protein interactions and specifically the PKARIalpha-PAP7 and PAP7-TSPO interactions, using PAP7 mutants where the N0 area homologous to dual A-kinase-anchoring protein-1 or the acyl-CoA signature motif were deleted or using the peptide Ht31 known to disrupt the anchoring of PKA, inhibited both basal and hormone-induced steroidogenesis. These results suggest that the initiation of cAMP-induced protein-protein interactions results in the formation of a multivalent scaffold in the outer mitochondrial membrane that mediates the effect of hormones on mitochondrial cholesterol transport and steroidogenesis.  相似文献   

3.
4.
Steroid hormones regulate essential physiological processes, and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by luteinizing hormone (LH) via its receptor leading to increased cyclic AMP (cAMP) production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Steroidogenesis then passively decreases with the degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP-to-AMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis, including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutively steroidogenic R2C cells. We have also determined that maximum AMPK activation following stimulation of steroidogenesis in MA-10 Leydig cells occurs when steroid hormone production has reached a plateau. Our data identify AMPK as a molecular rheostat that actively represses steroid hormone biosynthesis to preserve cellular energy homeostasis and prevent excess steroid production.  相似文献   

5.
Liu MY  Lai HY  Yang BC  Tsai ML  Yang HY  Huang BM 《Life sciences》2001,68(8):849-859
Lead is an environmental and occupational pollutant. It has been reported that lead affects the male reproductive system in humans and animals. However, the cellular mechanism of the adverse effect of lead on Leydig cell steroidogenesis remains unknown. To clarify whether lead has a direct effect on Leydig cells and how lead affects Leydig cells, MA-10 cells, a mouse Leydig tumor cell line, were exploited in this study. Lead acetate significantly inhibited hCG- and dbcAMP-stimulated progesterone production in MA-10 cells at 2 h. Steroid production stimulated by hCG or dbcAMP were reduced by lead. The mechanism of lead in reducing MA-10 cell steroidogenesis was further investigated. The expression of Steroidogenic Acute Regulatory (StAR) protein and the activities of P450 side-chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzymes were detected. Cells were treated with dbcAMP, 22R-hydroxycholesterol or pregnenolone alone or in combination with lead acetate ranging from 10(-8) to 10(-5) M for 2 h. The expression of StAR protein stimulated by dbcAMP was suppressed by lead at about 50%. Progesterone productions treated with 22R-hydroxycholesterol or pregnenolone were reduced 30-40% in lead-treated MA-10 cells. These data suggest that lead directly inhibited steroidogenesis by decreasing StAR protein expression and the activities of P450scc and 3beta-HSD enzymes with a dose-response trend in MA-10 cells. Moreover, cadmium, a calcium channel blocker, abolished inhibitory effect of lead on MA-10 cell steroid production. This indicates that lead might act on calcium channel to regulate MA-10 cell steroidogenesis.  相似文献   

6.
7.
Steroid hormones are metabolically derived from multiple enzymatic transformations of cholesterol. The controlling step in steroid hormone biogenesis is the delivery of cholesterol from intracellular stores to the cytochrome P450 enzyme CYP11A1 in the mitochondrial matrix. The 18-kDa translocator protein (TSPO) plays an integral part in this mitochondrial cholesterol transport. Consistent with its role in intracellular cholesterol movement, TSPO possesses a cholesterol recognition/interaction amino acid consensus (CRAC) motif that has been demonstrated to bind cholesterol. To further investigate the TSPO CRAC motif, we performed molecular modeling studies and identified a novel ligand, 3,17,19-androsten-5-triol (19-Atriol) that inhibits cholesterol binding at the CRAC motif. 19-Atriol could bind a synthetic CRAC peptide and rapidly inhibited hormonally induced steroidogenesis in MA-10 mouse Leydig tumor cells and constitutive steroidogenesis in R2C rat Leydig tumor cells at low micromolar concentrations. Inhibition at these concentrations was not due to toxicity or inhibition of the CYP11A1 enzyme and was reversed upon removal of the compound. In addition, 19-Atriol was an even more potent inhibitor of PK 11195-stimulated steroidogenesis, with activity in the high nanomolar range. This was accomplished without affecting PK 11195 binding or basal steroidogenesis. Finally, 19-Atriol inhibited mitochondrial import and processing of the steroidogenic acute regulatory protein without any effect on TSPO protein levels. In conclusion, we have identified a novel androstenetriol that can interact with the CRAC domain of TSPO, can control hormonal and constitutive steroidogenesis, and may prove to be a useful tool in the therapeutic control of diseases of excessive steroid formation.  相似文献   

8.
9.
Testosterone level is low in insulin-resistant type 2 diabetes. Whether this is due to negative effects of high level of insulin on the testes caused by insulin resistance has not been studied in detail. In this study, we found that insulin directly binds to insulin receptors in Leydig cell membranes and activates phospho-insulin receptor-β (phospho-IR-β), phospho-IRS1, and phospho-AKT, leading to up-regulation of DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1) gene expression in the MA-10 mouse Leydig cell line. Insulin also inhibits cAMP-induced and liver receptor homolog-1 (LRH-1)-induced steroidogenic enzyme gene expression and steroidogenesis. In contrast, knockdown of DAX-1 reversed insulin-mediated inhibition of steroidogenesis. Whether insulin directly represses steroidogenesis through regulation of steroidogenic enzyme gene expression was assessed in insulin-injected mouse models and high fat diet-induced obesity. In insulin-injected mouse models, insulin receptor signal pathway was activated and subsequently inhibited steroidogenesis via induction of DAX-1 without significant change of luteinizing hormone or FSH levels. Likewise, the levels of steroidogenic enzyme gene expression and steroidogenesis were low, but interestingly, the level of DAX-1 was high in the testes of high fat diet-fed mice. These results represent a novel regulatory mechanism of steroidogenesis in Leydig cells. Insulin-mediated induction of DAX-1 in Leydig cells of testis may be a key regulatory step of serum sex hormone level in insulin-resistant states.  相似文献   

10.
CKLFSF is a protein family that serves as a functional bridge between chemokines and members of the transmembrane 4 superfamily (TM4SF). In the course of evolution, CKLFSF2 has evolved as two isoforms, namely CKLFSF2A and CKLFSF2B, in mice. CKLFSF2A, also known as CMTM2A and ARR19, is expressed in the testis and is important for testicular steroidogenesis. CKLFSF2B is also known to be highly expressed in the testis. In the prepubertal stage, CKLFSF2B is expressed only in Leydig cells, but it is highly expressed in haploid germ cells and Leydig cells in adult testis. CKLFSF2B is naturally processed inside the cell at its C-terminus to yield smaller proteins compared to its theoretical size of ≈25?kDa. The Cklfsf2b gene is regulated by GATA-1 and CREB protein, binding to their respective binding elements present in the 2-kb upstream promoter sequence. In addition, the overexpression of CKLFSF2B inhibited the activity of the Nur77 promoter, which consequently represses the promoter activity of Nur77-target steroidogenic genes such as P450c17, 3β-HSD, and StAR in MA-10 Leydig cells. Adenovirus-mediated overexpression of CKLFSF2B in primary Leydig cells isolated from adult mice shows a repression of steroidogenic gene expression and consequently testosterone production. Moreover, intratesticular injection of CKLFSF2B-expressing adenovirus in adult mice clearly had a repressive effect compared to the control injected with only GFP-expressing adenovirus. Altogether, these findings suggest that CKLFSF2B might be involved in the development and function of Leydig cells and regulate testicular testosterone production by fine-tuning the expression of steroidogenic genes.  相似文献   

11.
12.
Lindane, the gamma isomer of hexachlorocyclohexane (HCH), is one of the oldest synthetic pesticides still in use worldwide. Numerous reports have shown that this pesticide adversely affects reproductive function in animals. Although the pathogenesis of reproductive dysfunction is not yet fully understood, recent reports indicate that lindane can directly inhibit adrenal and gonadal steroidogenesis. Because Leydig cells play a pivotal role in male reproductive function through the production of testosterone, the mouse MA-10 Leydig tumor cell line was used to assess the potential effects of gamma-HCH and its isomers, alpha-HCH and delta-HCH, on steroid production, steroidogenic enzyme expression and activity, and steroidogenic acute regulatory (StAR) protein expression. StAR mediates the rate-limiting and acutely regulated step in hormone-stimulated steroidogenesis, the intramitochondrial transfer of cholesterol to the P450(scc) enzyme. Our studies demonstrate that alpha-, delta-, and gamma-HCH inhibited dibutyryl ([Bu](2)) cAMP-stimulated progesterone production in MA-10 cells in a dosage-dependent manner without affecting general protein synthesis; and protein kinase A or steroidogenic enzyme expression, activity, or both. In contrast, each of these isomers dramatically reduced (Bu)(2)cAMP-stimulated StAR protein levels. Therefore, our results are consistent with the hypothesis that alpha-, delta-, and gamma-HCH inhibited steroidogenesis by reducing StAR protein expression, an action that may contribute to the pathogenesis of lindane-induced reproductive dysfunction.  相似文献   

13.
Testosterone biosynthesis in Leydig cells is dependent on two cytochrome P450 enzymes, cholesterol side-chain cleavage (P450scc) and 17 alpha-hydroxylase/C17-20 lyase (P450(17 alpha]. The expression of these two enzymes is differentially regulated by LH acting via its second messenger, cyclic adenosine 3',5'-monophosphate (cAMP), and by specific steroid hormones. P450scc is constitutively expressed in normal mouse Leydig cells and in MA-10 tumor Leydig cells. Chronic cAMP stimulation increases the steady state levels of P450scc mRNA and de novo P450scc protein synthesis. In contrast, cAMP is obligatory for de novo synthesis of P450(17 alpha) in normal mouse Leydig cells; P450(17 alpha) synthesis ceases in the absence of luteinizing hormone or cAMP. MA-10 tumor Leydig cells do not express P450(17 alpha) even after treatment with cAMP. The amount of P450(17 alpha) in Leydig cells is negatively regulated by testosterone acting by two distinct mechanisms. At low concentrations, testosterone acts via the androgen receptor to repress cAMP-induced synthesis of P450(17 alpha), whereas at high concentrations this steroid increases the rate of degradation of the enzyme by an oxygen-mediated mechanism. Both constitutive and cAMP-induced synthesis of P450scc protein and steady state levels of mRNA are modulated by glucocorticoids. In normal mouse Leydig cells, glucocorticoids repress P450scc synthesis and steady state levels of P450scc mRNA, whereas glucocorticoids stimulate P450scc synthesis and levels of P450scc mRNA in the tumor Leydig cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
We have previously reported that low-density lipoprotein (LDL) enhances and prolongs steroidogenesis in human choriogonadotropin (CG)-stimulated Leydig tumor cells (MA-10). The studies described herein elucidate the mechanisms by which LDL increases human CG stimulated steroidogenesis. Our results show that the MA-10 cells express the classic LDL pathway. LDL is bound to specific surface binding sites which are regulated by the level of intracellular cholesterol. The cellular processing of bound LDL is temperature-dependent and is inhibited by blocking lysosomal function. By using an LDL derivative in which the core cholesteryl esters have been replaced with [3H]cholesteryl linoleate, we show that LDL cholesterol is rapidly utilized for steroid hormone synthesis. The utilization of LDL cholesterol quantitatively accounts for the LDL-induced augmentation of steroidogenesis. We also show that the addition of LDL to human CG-stimulated MA-10 cells maintains cellular free and esterified cholesterol levels and increases progesterone biosynthesis. The addition of LDL does not, however, affect the cellular utilization of preexisting cholesterol stores for steroidogenesis.  相似文献   

16.
Fetal testis steroidogenesis plays an important role in the reproductive development of the male fetus. While regulators of certain aspects of steroidogenesis are known, the initial driver of steroidogenesis in the human and rodent fetal testis is unclear. Through comparative analysis of rodent fetal testis microarray datasets, 54 candidate fetal Leydig cell-specific genes were identified. Fetal mouse testis interstitial expression of a subset of these genes with unknown expression (Crhr1, Gramd1b, Itih5, Vgll3, and Vsnl1) was verified by whole-mount in situ hybridization. Among the candidate fetal Leydig cell-specific factors, three receptors (CRHR1, PRLR, and PROKR2) were tested for a steroidogenic function using ex vivo fetal testes treated with receptor agonists (CRH, PRL, and PROK2). While PRL and PROK2 had no effect, CRH, at low (approximately 1 to 10) nM concentration, increased expression of the steroidogenic genes Cyp11a1, Cyp17a1, Scarb1, and Star in GD15 mouse and GD17 rat testes, and in conjunction, testosterone production was increased. Exposure of GD15 fetal mouse testis to a specific CRHR1 antagonist blunted the CRH-induced steroidogenic gene expression and testosterone responses. Similar to ex vivo rodent fetal testes, ≥10 nM CRH exposure of MA-10 Leydig cells increased steroidogenic pathway mRNA and progesterone levels, showing CRH can enhance steroidogenesis by directly targeting Leydig cells. Crh mRNA expression was observed in rodent fetal hypothalamus, and CRH peptide was detected in rodent amniotic fluid. Together, these data provide a resource for discovering factors controlling fetal Leydig cell biology and suggest that CRHR1 activation by CRH stimulates rat and mouse fetal Leydig cell steroidogenesis in vivo.  相似文献   

17.
Previous studies in MA-10 tumor Leydig cells demonstrated that disruption of the mitochondrial electron-transport chain (ETC), membrane potential (ΔΨ(m)), or ATP synthesis independently inhibited steroidogenesis. In contrast, studies of primary Leydig cells indicated that the ETC, ΔΨ(m), and ATP synthesis cooperatively affected steroidogenesis. These results suggest significant differences between the two systems and call into question the extent to which results from tumor Leydig cells relate to primary cells. Thus, to further understand the similarities and differences between the two systems as well as the impact of ATP disruption on steroidogenesis, we performed comparative studies of MA-10 and primary Leydig cells under similar conditions of mitochondrial disruption. We show that mitochondrial ATP synthesis is critical for steroidogenesis in both primary and tumor Leydig cells. However, in striking contrast to primary cells, perturbation of ΔΨ(m) in MA-10 cells did not substantially decrease cellular ATP content, a perplexing finding because ΔΨ(m) powers the mitochondrial ATP synthase. Further studies revealed that a significant proportion of cellular ATP in MA-10 cells derives from glycolysis. In contrast, primary cells appear to be almost completely dependent on mitochondrial respiration for their energy provision. Inhibitor studies also suggested that the MA-10 ETC is impaired. This work underscores the importance of mitochondrial ATP for hormone-stimulated steroid production in both MA-10 and primary Leydig cells while indicating that caution must be exercised in extrapolating data from tumor cells to primary tissue.  相似文献   

18.
The rat R2C Leydig tumor cell line is constitutively steroidogenic in nature, while the mouse MA-10 Leydig tumor cell line synthesizes large amounts of steroids only in response to hormonal stimulation. Earlier studies showed abundant cAMP-independent steroid production and constitutive expression of steroidogenic acute regulatory (StAR) protein in R2C cells. The objective of the current study was to identify possible genetic alterations in the R2C cell line responsible for rendering it a constitutively steroidogenic cell line, especially those that might have altered its cholesterol homeostatic mechanisms. Measurement of the levels of cholesterol esters and free cholesterol, precursors for steroidogenesis, indicated that R2C mitochondria were fourfold enriched in free cholesterol content compared with MA-10 mitochondria. In addition to the previously demonstrated increased expression of StAR protein, we show that R2C cells possess marginally enhanced protein kinase A activity, exhibit higher capacity to take up extracellular cholesterol esters, and express much higher levels of scavenger receptor-type B class 1 (SR-B1) and hormone sensitive lipase (HSL). These observations suggest that the high level of steroid biosynthesis in R2C cells is a result of the constitutive expression of the components involved in the uptake of cholesterol esters (SR-B1), their conversion to free cholesterol (HSL), and its mobilization to the inner mitochondrial membrane (StAR).  相似文献   

19.
In this study we examined the effects of retinol and retinoic acid on steroid production in MA-10 mouse Leydig tumor cells. Results showed that both retinol and retinoic acid greatly increased progesterone production in this cloned cell line. The stimulatory effect of retinoids is not inhibited by cycloheximide suggesting that de novo protein synthesis is not required. The presence of the retinoid binding proteins CRBP and CRABP could not be detected in MA-10 Leydig cell cytosol indicating that the stimulatory action of retinoids on progesterone production is not mediated through these cellular binding proteins. Both previous and present findings suggest that retinoids play an important role in the regulation of Leydig cell steroidogenesis and that MA-10 Leydig tumor cells may represent an ideal in vitro cell system to study the mechanism of action of retinoids in Leydig cell steroidogenesis.  相似文献   

20.
Translocator proteins (TSPO) are the products of a family of genes that is evolutionarily conserved from bacteria to humans and expressed in most mammalian tissues and cells. Human TSPO (18 kDa) is expressed at high levels in steroid synthesizing endocrine tissues where it localizes to mitochondria and functions in the first step of steroid formation, the transport of cholesterol into the mitochondria. TSPO expression is elevated in cancerous tissues and during tissue injury, which has lead to the hypothesis that TSPO has roles in apoptosis and the maintenance of mitochondrial integrity. We recently identified a new paralog of Tspo in both the human and mouse. This paralog arose from an ancient gene duplication event before the divergence of the classes aves and mammals, and appears to have specialized tissue-, cell-, and organelle-specific functions. Evidence from the study of TSPO homologs in mammals, bacteria, and plants supports the conclusion that the TSPO family of proteins regulates specialized functions related to oxygen-mediated metabolism. In this review, we provide a comprehensive overview of the divergent function and evolutionary origin of Tspo genes in Bacteria, Archaea, and Eukarya domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号