首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ICP34.5 protein of herpes simplex virus (HSV) is involved in many aspects of viral pathogenesis; promoting neurovirulence, inhibiting interferon-induced shutoff of protein synthesis, interacting with PCNA and TBK1, inhibiting dendritic cell (DC) maturation, and binding to Beclin 1 to interfere with autophagy. Because of its key role in neuropathogenicity, the γ34.5 gene is deleted in all oncolytic HSVs (oHSVs) currently in clinical trial for treating malignant gliomas. Unfortunately, deletion of γ34.5 attenuates virus replication in cancer cells, especially human glioblastoma stem cells (GSCs). To develop new oHSVs for use in the brain and that replicate in GSCs, we explored the effect of deleting the γ34.5 Beclin 1 binding domain (BBD). To ensure cancer selectivity and safety, we inactivated the ICP6 gene (UL39, large subunit of ribonucleotide reductase), constructing ICP6 mutants with different γ34.5 genotypes: Δ68HR-6, intact γ34.5; Δ68H-6, γ34.5 BBD deleted; and 1716-6, γ34.5 deleted. Multimutated Δ68H-6 exhibited minimal neuropathogenicity in HSV-1-susceptible mice, as opposed to Δ68H and Δ68HR-6. It replicated well in human glioma cell lines and GSCs, effectively killing cells in vitro and prolonging survival of mice bearing orthotopic brain tumors. In contrast, 1716 and 1716-6 barely replicated in GSCs. Infection of glioma cells with Δ68H-6 and 1716-6 induced autophagy and increased phosphorylation of eIF2α, while inhibition of autophagy, by Beclin 1 short hairpin RNA (shRNA) knockdown or pharmacological inhibition, had no effect on virus replication or phosphorylated eIF2α (p-eIF2α) levels. Thus, Δ68H-6 represents a new oHSV vector that is safe and effective against a variety of brain tumor models.  相似文献   

3.
The herpes simplex virus type 1 (HSV-1) neurovirulence gene encoding ICP34.5 controls the autophagy pathway. HSV-1 strains lacking ICP34.5 are attenuated in growth and pathogenesis in animal models and in primary cultured cells. While this growth defect has been attributed to the inability of an ICP34.5-null virus to counteract the induction of translational arrest through the PKR antiviral pathway, the role of autophagy in the regulation of HSV-1 replication is unknown. Here we show that HSV-1 infection induces autophagy in primary murine embryonic fibroblasts and that autophagosome formation is increased to a greater extent following infection with an ICP34.5-deficient virus. Elimination of the autophagic pathway did not significantly alter the replication of wild-type HSV-1 or ICP34.5 mutants. The phosphorylation state of eIF2alpha and viral protein accumulation were unchanged in HSV-1-infected cells unable to undergo autophagy. These data show that while ICP34.5 regulates autophagy, it is the prevention of translational arrest by ICP34.5 rather than its control of autophagy that is the pivotal determinant of efficient HSV-1 replication in primary cell culture.  相似文献   

4.
5.
In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.  相似文献   

6.
Recently, investigators showed that mice with syngeneic murine gliomas that were treated with a neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal cells. Previous studies have shown antitumor effects of other oHSV against a number of adult tumors including hepatocellular carcinoma and renal cell carcinoma. The purpose of the current study was to investigate the oncolytic potential of M002 against difficult to treat pediatric liver and kidney tumors. We showed that the oHSV, M002, infected, replicated, and decreased cell survival in hepatoblastoma, malignant rhabdoid kidney tumor, and renal sarcoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly increased survival and decreased tumor growth. Finally, these studies showed that the primary entry protein for oHSV, CD111 (nectin-1) was present in human hepatoblastoma and malignant rhabdoid kidney tumor specimens. We concluded that M002 effectively targeted these rare aggressive tumor types and that M002 may have potential for use in children with unresponsive or relapsed pediatric solid tumors.  相似文献   

7.
Two intrastrain variants of herpes simplex virus type 1 (HSV-1) were isolated from a newborn with fatal disseminated infection. A small-plaque-producing variant (SP7) was the predominant virus (>99%) in the brain, and a large-plaque-producing variant (LP5) was the predominant virus (>99%) in the lung and gastrointestinal tract. EcoRI and BamHI restriction fragment patterns indicated that SP7 and LP5 are related strains. The large-plaque variants produced plaques similar in size to those produced by HSV-1 KOS. Unlike LP5 or KOS, SP7 was highly cell associated and processing of glycoprotein C and glycoprotein D was limited to precursor forms in infected Vero cells. The large-plaque phenotype from KOS could be transferred into SP7 by cotransfection of plasmids containing the EK or JK EcoRI fragment or a 3-kb plasmid with the UL34.5 gene of HSV-1 KOS together with SP7 DNA. PCR analysis using primers from within the ICP34.5 gene indicated differences for SP7, LP5, and KOS. Sequencing data indicated two sets of deletions in the UL34.5 gene that distinguish SP7 from LP5. Both SP7 and LP5 variants were neurovirulent (lethal following intracranial inoculation of young BALB/c mice); however, the LP5 variant was much less able to cause lethal neuroinvasive disease (footpad inoculation) whereas KOS caused no disease. Passage of SP7 selected for viruses (SLP-5 and SLP-10) which were attenuated for lethal neuroinvasive disease, were not cell-associated, and differed in the UL34.5 gene. UL34.5 from SLP-5 or SLP-10 resembled that of KOS. These findings support a role for UL34.5 in promoting virus egress and for neuroinvasive disease.  相似文献   

8.
We previously demonstrated that IL-4 gene-transfected glioma cell vaccines induce effective therapeutic immunity in preclinical glioma models, and have initiated phase I trials of these vaccines in patients with malignant gliomas. To gain additional mechanistic insight into the efficacy of this approach, we have treated mice bearing the MCA205 (H-2(b)) or CMS-4 (H-2(d)) sarcomas. IL-12/23 p40(-/-) and IFN-gamma(-/-) mice, which were able to reject the initial inoculation of IL-4 expressing tumors, failed to mount a sustained systemic response against parental (nontransfected) tumor cells. Paracrine production of IL-4 in vaccine sites promoted the accumulation and maturation of IL-12p70-secreting tumor-infiltrating dendritic cells (TIDCs). Adoptive transfer of TIDCs isolated from vaccinated wild-type, but not IL-12/23 p40(-/-), mice were capable of promoting tumor-specific CTL responses in syngeneic recipient animals. Interestingly, both STAT4(-/-) and STAT6(-/-) mice failed to reject IL-4-transfected tumors in concert with the reduced capacity of TIDCs to produce IL-12p70 and to promote specific antitumor CTL reactivity. These results suggest that vaccines consisting of tumor cells engineered to produce the type 2 cytokine, IL-4, critically depend on type 1 immunity for their observed therapeutic efficacy.  相似文献   

9.
Jin H  Yan Z  Ma Y  Cao Y  He B 《Journal of virology》2011,85(7):3397-3407
Dendritic cells are sentinels in innate and adaptive immunity. Upon virus infection, a complex program is in operation, which activates IκB kinase (IKK), a key regulator of inflammatory cytokines and costimulatory molecules. Here we show that the γ(1)34.5 protein, a virulence factor of herpes simplex viruses, blocks Toll-like receptor-mediated dendritic cell maturation. While the wild-type virus inhibits the induction of major histocompatibility complex (MHC) class II, CD86, interleukin-6 (IL-6), and IL-12, the γ(1)34.5-null mutant does not. Notably, γ(1)34.5 works in the absence of any other viral proteins. When expressed in mammalian cells, including dendritic cells, γ(1)34.5 associates with IKKα/β and inhibits NF-κB activation. This is mirrored by the inhibition of IKKα/β phosphorylation, p65/RelA phosphorylation, and nuclear translocation in response to lipopolysaccharide or poly(I:C) stimulation. Importantly, γ(1)34.5 recruits both IKKα/β and protein phosphatase 1, forming a complex that dephosphorylates two serine residues within the catalytic domains of IκB kinase. The amino-terminal domain of γ(1)34.5 interacts with IKKα/β, whereas the carboxyl-terminal domain binds to protein phosphatase 1. Deletions or mutations in either domain abolish the activity of γ(1)34.5. These results suggest that the control of IκB kinase dephosphorylation by γ(1)34.5 represents a critical viral mechanism to disrupt dendritic cell functions.  相似文献   

10.
11.
12.
This study examined the safety of intracerebral inoculation of G207, an attenuated, replication-competent herpes simplex virus type 1 (HSV-1) recombinant, in nonhuman primates. Sixteen New World owl monkeys (Aotus nancymae [karyotype 1, formerly believed to be A. trivirgatus]), known for their exquisite susceptibility to HSV-1 infection, were evaluated. Thirteen underwent intracerebral inoculation with G207 at doses of 10(7) or 10(9) PFU, two were vehicle inoculated, and one served as an infected wild-type control and received 10(3) PFU of HSV-1 strain F. HSV-1 strain F caused rapid mortality and symptoms consistent with HSV encephalitis, including fever, hemiparesis, meningitis, and hemorrhage in the basal ganglia. One year after G207 inoculation, seven of the animals were alive and exhibited no evidence of clinical complications. Three deaths resulted from nonneurologic causes unrelated to HSV infection, and three animals were sacrificed for histopathologic examination. Two animals were reinoculated with G207 (10(7) PFU) at the same stereotactic coordinates 1 year after the initial G207 inoculation. These animals were alive and healthy 2 years after the second inoculation. Cerebral magnetic resonance imaging studies performed both before and after G207 inoculation failed to reveal radiographic evidence of HSV-related sequelae. Despite the lack of outwardly observable HSV pathology, measurable increases in serum anti-HSV titers were detected. Histopathological examination of multiple organ tissues found no evidence of HSV-induced histopathology or dissemination. We conclude that intracerebral inoculation of up to 10(9) PFU of G207, well above the efficacious dose in mouse tumor studies, is safe and therefore appropriate for human clinical trials.  相似文献   

13.
Autophagy has been intensively studied in herpes simplex virus type 1 (HSV-1), a human alphaherpesvirus. The HSV-1 genome encodes a well-known neurovirulence protein called ICP34.5. When the gene encoding this protein is deleted from the genome, the virus is markedly less virulent when injected into the brains of animal models. Subsequent characterization of ICP34.5 established that the neurovirulence protein interacts with BECN1, thereby inhibiting autophagy and facilitating viral replication in the brain. However, an ortholog of the ICP34.5 gene is lacking in the genomes of other closely related alphaherpesviruses, such as varicella-zoster virus (VZV). Further, autophagosomes are easily identified in the exanthem (rash) that is the hallmark of both VZV diseases—varicella and herpes zoster. Inhibition of autophagy leads to diminished VZV titers. Finally, no block is detected in studies of autophagic flux following VZV infection. Thus autophagy appears to be proviral during VZV infection while antiviral during HSV-1 infection. Because divergence to this degree is extremely unusual for 2 closely related herpesviruses, we postulate that VZV has accommodated its infectious cycle to benefit from autophagic flux, whereas HSV-1 has captured cellular immunomodulatory genes to inhibit autophagy.  相似文献   

14.
Earlier studies have shown that herpes simplex virus type 1 (HSV-1) activated protein kinase R (PKR) but that the product of the product of the gamma(1)34.5 gene binds and redirects the host phosphatase 1 to dephosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2alpha). In consequence, the gamma(1)34.5 gene product averts the threatened shutoff of protein synthesis caused by activated PKR. Serial passages of Deltagamma(1)34.5 mutants in human cells led to isolation of two classes of second-site, compensatory mutants. The first, reported earlier, resulted from the juxtaposition of the alpha promoter of the U(S)12 gene to the coding sequence of the U(S)11 gene. The mutant blocks the phosphorylation of eIF-2alpha but does not restore the virulence phenotype of the wild-type virus. We report another class of second-site, compensatory mutants that do not map to the U(S)10-12 domain of the HSV-1 genome. All mutants in this series exhibit sustained late protein synthesis, higher yields in human cells, and reduced phosphorylation of PKR that appears to be phosphatase dependent. Specific dephosphorylation of eIF-2alpha was not demonstrable. At least one mutant in this series exhibited a partial restoration of the virulence phenotype characteristic of the wild-type virus phenotype. The results suggest that the second-site mutations reflect activation of fossilized functions designed to block the interferon response pathways in cells infected with the progenitor of present HSV.  相似文献   

15.
A cytokine gene therapy approach was conducted against metastatic lesions of cytotoxic T lymphocyte (CTL)-unsusceptible tumor in mice. The EBV-based and conventional plasmid vectors that encode murine interleukin-12 (IL-12) gene (pGEG.mIL-12 and pG.mIL-12, respectively) were intravenously transfected into the mice that had received a subcutaneous inoculation of M5076 sarcoma cells. The pGEG.mIL-12 transfection drastically suppressed the subcutaneous as well as hepatic metastatic tumors, resulting in significant prolongation of survival period of the animals. Although single administration with pG.mIL-12 was not effective, repetitive transfection with the plasmid significantly prolonged the longevity of the mice-bearing the metastatic liver tumors. Multiple transfection with either pGEG.mIL-12 or pG.mIL-12 also suppressed peritoneal carcinomatosis in mice that had been injected with M5076 cells into the peritoneal cavity. It was suggested that a high level IL-12 production elicited by the intravenous delivery of the cytokine gene may be quite effective in inhibiting metastatic and CTL-unsusceptible neoplasms.  相似文献   

16.
Aim: The aim of this study was to develop an immunotherapy specific to a malignant glioma by examining the efficacy of glioma tumor-specific cytotoxic T lymphocytes (CTL) as well as the anti-tumor immunity by vaccination with dendritic cells (DC) engineered to express murine IL-12 using adenovirus-mediated gene transfer and pulsed with a GL26 glioma cell lysate (AdVIL-12/DC+GL26) was investigated. Experimentl: For measuring CTL activity, splenocytes were harvested from the mice immunized with AdVIL-12/DC+GL26 and restimulated with syngeneic GL26 for 7 days. The frequencies of antigen-specific cytokine-secreting T cell were determined with mIFN-γ ELISPOT. The cytotoxicity of CTL was assessed in a standard 51Cr-release assay. For the protective study in the subcutaneous tumor model, the mice were vaccinated subcutaneously (s.c) with 1×106 AdVIL-12/DC+GL26 in the right flanks on day −21, −14 and −7. On day 7, the mice were challenged with 1×106 GL26 tumor cells in the shaved left flank. For a protective study in the intracranial tumor model, the mice were vaccinated with 1×106 AdVIL-12/DC+GL26 s.c in the right flanks on days −21, −14 and −7. Fresh 1×104 GL26 cells were inoculated into the brain on day 0. To prove a therapeutic benefit in established tumors, subcutaneous or intracranial GL26 tumor-bearing mice were vaccinated s.c with 1×106 AdVIL-12/DC+GL26 on day 5, 12 and 19 after tumor cell inoculation. Results: Splenocytes from the mice vaccinated with the AdVIL-12/DC+GL26 showed enhanced induction of tumor-specific CTL and increased numbers of IFN-γ: secreting T cells by ELISPOT. Moreover, vaccination of AdVIL-12/DC+GL26 enhanced the induction of anti-tumor immunity in both the subcutaneous and intracranial tumor models. Conclusions: These preclinical model results suggest that DC engineered to express IL-12 and pulsed with a tumor lysate could be used in a possible immunotherapeutic strategy for malignant glioma.Korea Research Foundation Grant (KRF-2004-005-E00001).  相似文献   

17.
In a recent report, the neurovirulence of herpes simplex virus type 1 (HSV-1) was mapped to the ICP34.5 gene (J. Chou, E. R. Kern, R. J. Whitley, and B. Roizman, Science 250:1262-1266, 1990). In this report, specific mutations within ICP34.5 were constructed in HSV-1 strain 17syn+ to determine the effects of these mutations in a fully neurovirulent isolate. It was found that termination of the ICP34.5 gene after the N-terminal 30 amino acids resulted in a mutant, 17termA, which was 25- to 90-fold reduced in neurovirulence. This reduction of neurovirulence was associated with restricted replication of the mutant virus in mouse brain. The reduced replication phenotype was also evident in the trigeminal and dorsal root ganglia following inoculation at the periphery. 17termA was capable of replicating with wild-type kinetics in mouse footpads, and therefore the restriction seen in neural tissues was not due to a generalized replication defect in mouse cells. Significantly, replication of the mutant was also restricted in the mouse cornea in vivo and in confluent primary mouse embryo cells and mouse 10T1/2 cells in vitro. However, 17termA replicated with much greater efficiency in subconfluent mouse embryo cells, suggesting that the physiological state of the cell may be an important factor for productive replication of this mutant. Restoration of the ICP34.5 gene to the mutant resulted in a virus which displayed wild-type neurovirulence and replication kinetics in all cells and tissues tested.  相似文献   

18.
Although γherpesvirus infections are associated with enhanced lung fibrosis in both clinical and animal studies, there is limited understanding about fibrotic effects of γherpesviruses on cell types present in the lung, particularly during latent infection. Wild-type mice were intranasally infected with a murine γherpesvirus (γHV-68) or mock-infected with saline. Twenty-eight days postinfection (dpi), ~14 days following clearance of the lytic infection, alveolar macrophages (AMs), mesenchymal cells, and CD19-enriched cell populations from the lung and spleen express M(3) and/or glycoprotein B (gB) viral mRNA and harbor viral genome. AMs from infected mice express more transforming growth factor (TGF)-β(1), CCL2, CCL12, TNF-α, and IFN-γ than AMs from mock-infected mice. Mesenchymal cells express more total TGF-β(1), CCL12, and TNF-α than mesenchymal cells from mock-infected mice. Lung and spleen CD19-enriched cells express more total TGF-β(1) 28 dpi compared with controls. The CD19-negative fraction of the spleen overexpresses TGF-β(1) and harbors viral genome, but this likely represents infection of monocytes. Purified T cells from the lung harbor almost no viral genome. Purified T cells overexpress IL-10 but not TGF-β(1). Intracellular cytokine staining demonstrated that lung T cells at 28 dpi produce IFN-γ but not IL-4. Thus infection with a murine γherpesvirus is sufficient to upregulate profibrotic and proinflammatory factors in a variety of lung resident and circulating cell types 28 dpi. Our results provide new information about possible contributions of these cells to fibrogenesis in the lungs of individuals harboring a γherpesvirus infection and may help explain why γHV-68 infection can augment or exacerbate fibrotic responses in mice.  相似文献   

19.
Wild-type herpes simplex virus 1 (HSV-1) multiplies, spreads, and rapidly destroys cells of the murine central nervous system (CNS). In contrast, mutants lacking both copies of the gamma(1)34.5- gene have been shown to be virtually lacking in virulence even after direct inoculation of high-titered virus into the CNS of susceptible mice (J. Chou, E. R. Kern, R. J. Whitley, and B. Roizman, Science 250:1262-1266, 1990). To investigate the host range and distribution of infected cells in the CNS of mice, 4- to 5-week-old mice were inoculated stereotaxically into the caudate/putamen with 3 x 10(5) PFU of the gamma(1)34.5- virus R3616. Four-micrometer-thick sections of mouse brains removed on day 3, 5, or 7 after infection were reacted with a polyclonal antibody directed primarily to structural proteins of the virus and with antibodies specific for neurons, astrocytes, or oligodendrocytes. This report shows the following: (i) most of the tissue damage caused by R3616 was at the site of injection, (ii) the virus spread by retrograde transport from the site of infection to neuronal cell nuclei at distant sites and to ependymal cells by cerebrospinal fluid, (iii) the virus infected neurons, astrocytes, oligodendrocytes, and ependymal cells and hence did not discriminate among CNS cells, (iv) viral replication in some neurons could be deduced from the observation of infected astrocytes and oligodendrocytes at distant sites, and (v) infected cells were being efficiently cleared from the nervous system by day 7 after infection. We conclude that the gamma(1)34.5- attenuation phenotype is reflected in a gross reduction in the ability of the virus to replicate and spread from cell to cell and is not due to a restricted host range. The block in viral replication appears to be a late event in viral replication.  相似文献   

20.
Glioblastoma multiforme (GBM) is the most common and aggressive of the primary brain tumors. These tumors express multiple members of the epithelial sodium channel (ENaC)/degenerin (Deg) family and are associated with a basally active amiloride-sensitive cation current. We hypothesize that this glioma current is mediated by a hybrid channel composed of a mixture of ENaC and acid-sensing ion channel (ASIC) subunits. To test the hypothesis that ASIC1 interacts with αENaC and γENaC at the cellular level, we have used total internal reflection fluorescence microscopy (TIRFM) in live rat astrocytes transiently cotransfected with cDNAs for ASIC1-DsRed plus αENaC-yellow fluorescent protein (YFP) or ASIC1-DsRed plus γENaC-YFP. TIRFM images show colocalization of ASIC1 with both αENaC and γENaC. Furthermore, using TIRFM in stably transfected D54-MG cells, we also found that ASIC1 and αENaC both localize to a submembrane region following exposure to pH 6.0, similar to the acidic conditions found in the core of a glioblastoma lesion. Using high-resolution clear native gel electrophoresis, we found that ASIC1 forms a complex with ENaC subunits which migrates at ≈480 kDa in D54-MG glioma cells. These data suggest that different ENaC/Deg subunits interact and could combine to form a hybrid channel that likely underlies the amiloride-sensitive current seen in human glioma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号