首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The generation of myelinating cells from multipotential neural stem cells in the CNS requires the initiation of specific gene expression programs in oligodendrocytes (OLs). We reasoned that microRNAs (miRNAs) could play an important role in this process by regulating genes crucial for OL development. Here we identified miR-7a as one of the highly enriched miRNAs in oligodendrocyte precursor cells (OPCs), overexpression of which in either neural progenitor cells (NPCs) or embryonic mouse cortex promoted the generation of OL lineage cells. Blocking the function of miR-7a in differentiating NPCs led to a reduction in OL number and an expansion of neuronal populations simultaneously. We also found that overexpression of this miRNA in purified OPC cultures promoted cell proliferation and inhibited further maturation. In addition, miR-7a might exert the effects just mentioned partially by directly repressing proneuronal differentiation factors including Pax6 and NeuroD4, or proOL genes involved in oligodendrocyte maturation. These results suggest that miRNA pathway is essential in determining cell fate commitment for OLs and thus providing a new strategy for modulating this process in OL loss diseases.  相似文献   

4.
Due to its intermediate complexity and its sophisticated genetic tools, the larval brain of Drosophila is a useful experimental system to study the mechanisms that control the generation of cell diversity in the CNS. In order to gain insight into the neuronal and glial lineage specificity of neural progenitor cells during postembryonic brain development, we have carried an extensive mosaic analysis throughout larval brain development. In contrast to embryonic CNS development, we have found that most postembryonic neurons and glial cells of the optic lobe and central brain originate from segregated progenitors. Our analysis also provides relevant information about the origin and proliferation patterns of several postembryonic lineages such as the superficial glia and the medial-anterior Medulla neuropile glia. Additionally, we have studied the spatio-temporal relationship between gcm expression and gliogenesis. We found that gcm expression is restricted to the post-mitotic cells of a few neuronal and glial lineages and it is mostly absent from postembryonic progenitors. Thus, in contrast to its major gliogenic role in the embryo, the function of gcm during postembryonic brain development seems to have evolved to the specification and differentiation of certain neuronal and glial lineages.  相似文献   

5.
6.
7.
Cell diversity in the Drosophila central nervous system (CNS) is primarily generated by the invariant lineage of neural precursors called neuroblasts. We used an enhancer trap screen to identify the ming gene, which is transiently expressed in a subset of neuroblasts at reproducible points in their cell lineage (i.e. in neuroblast 'sublineages'), suggesting that neuroblast identity can be altered during its cell lineage. ming encodes a predicted zinc finger protein and loss of ming function results in precise alterations in CNS gene expression, defects in axonogenesis and embryonic lethality. We propose that ming controls cell fate within neuroblast cell lineages.  相似文献   

8.
目的 Ku70蛋白主要通过其DNA结合特性参与双链DNA断裂(DSB)的非同源端连接(NHEJ)修复,有报道称其具有RNA结合功能,本文探索Ku70是否具有RNA解旋酶活性并影响miRNA加工成熟。方法 利用RNA免疫共沉淀(RIP)测序结合生物信息学分析Ku蛋白结合的RNA;蛋白质印迹法(Western blot,WB)结合定量反转录PCR(qRT-PCR)检测Ku蛋白与miRNAs的表达关系;生物膜干涉技术(BLI)实验分析Ku蛋白与RNA的结合能力;电泳迁移率变动分析(EMSA)实验确定Ku70及Ku80的RNA解旋酶活性;形态学检测结合WB分析Ku70调节miR-124引起的神经细胞功能变化;免疫荧光结合形态学分析寨卡病毒(ZIKV)感染后Ku70及miR-124的变化与神经元分化关联。结果 研究发现,Ku70蛋白具有RNA解旋酶活性,并通过其RNA解旋酶活性影响miRNA加工成熟。Ku70缺失引起许多miRNAs上调,其中包括神经细胞特异的miR-124。在人神经前体细胞(hNPCs)和人神经母细胞瘤细胞(SH-SY5Y)中敲低Ku70可促进 miR-124的成熟,从而导致上述细胞向神经元分化。本文进一步发现,ZIKV感染影响了Ku70及miR-124的表达,导致细胞形态的分化。结论 本研究揭示了Ku70的一种新功能,即Ku70有可能参与miRNA的成熟调控和神经细胞的分化,并且可能是ZIKV病毒致小头症的原因之一。  相似文献   

9.
Huang TC  Chang HY  Chen CY  Wu PY  Lee H  Liao YF  Hsu WM  Huang HC  Juan HF 《FEBS letters》2011,585(22):3582-3586
Neuroblastoma is the most common extracranial solid tumor in children. We investigate whether miR-124, the abundant neuronal miRNA, plays a pivotal role in neuroblastoma. Knockdown of miR-124 promotes neuroblastoma SK-N-SH cell differentiation, cell cycle arrest and apoptosis. Further miR-124 is predicted to target aryl hydrocarbon receptor (AHR) which may promote neuroblastoma cell differentiation. We validate that miR-124 may suppress the expression of AHR by targeting its 3'-UTR. These results suggest that miR-124 could serve as a potential therapeutic target of neuroblastoma.  相似文献   

10.
11.
12.
13.
In this pilot study we investigated the expression of 14 microRNAs in the cerebrospinal fluid (CSF) of dogs with neoplastic, inflammatory and degenerative disorders affecting the central nervous system (CNS). CSF microRNA (miRNA) expression profiles were compared to those from dogs with neurological signs but no evidence of structural or inflammatory CNS disease. Seven miRNAs were easily detected in all samples: miR-10b-5p, miR-19b, miR-21-5p, miR-30b-5p, miR-103a-3p, miR-124, and miR-128-3p. Expression of miR-10b-5p was significantly higher in the neoplastic group compared to other groups. There was no relation between miRNA expression and either CSF nucleated cell count or CSF protein content. Higher expression of miR-10b-5p in the neoplastic group is consistent with previous reports in human medicine where aberrant expression of miR-10b is associated with various neoplastic diseases of the CNS.  相似文献   

14.
15.
16.
The trol locus of Drosophila regulates the timing of neuroblast proliferation. In trol mutants, quiescent neuroblasts fail to begin division. We have investigated this cell cycle arrest to examine trol function. Induced expression of cyclin E or DP/E2F in trol mutants results in normal levels of dividing neuroblasts, while cyclin B expression has no effect. cyclin E expression is lower in the trol mutant larval CNS as assayed by quantitative RT-PCR, suggesting that trol neuroblasts are arrested in G1 due to lack of Cyclin E. Neither cyclin E nor E2F expression can phenocopy ana mutations, indicating that arrest caused by lack of Trol is different from Ana-mediated arrest.  相似文献   

17.
Drosophila brains contain numerous neurons that form complex circuits. These neurons are derived in stereotyped patterns from a fixed number of progenitors, called neuroblasts, and identifying individual neurons made by a neuroblast facilitates the reconstruction of neural circuits. An improved MARCM (mosaic analysis with a repressible cell marker) technique, called twin-spot MARCM, allows one to label the sister clones derived from a common progenitor simultaneously in different colors. It enables identification of every single neuron in an extended neuronal lineage based on the order of neuron birth. Here we report the first example, to our knowledge, of complete lineage analysis among neurons derived from a common neuroblast that relay olfactory information from the antennal lobe (AL) to higher brain centers. By identifying the sequentially derived neurons, we found that the neuroblast serially makes 40 types of AL projection neurons (PNs). During embryogenesis, one PN with multi-glomerular innervation and 18 uniglomerular PNs targeting 17 glomeruli of the adult AL are born. Many more PNs of 22 additional types, including four types of polyglomerular PNs, derive after the neuroblast resumes dividing in early larvae. Although different offspring are generated in a rather arbitrary sequence, the birth order strictly dictates the fate of each post-mitotic neuron, including the fate of programmed cell death. Notably, the embryonic progenitor has an altered temporal identity following each self-renewing asymmetric cell division. After larval hatching, the same progenitor produces multiple neurons for each cell type, but the number of neurons for each type is tightly regulated. These observations substantiate the origin-dependent specification of neuron types. Sequencing neuronal lineages will not only unravel how a complex brain develops but also permit systematic identification of neuron types for detailed structure and function analysis of the brain.  相似文献   

18.
Sharma P  Cline HT 《Neuron》2010,68(3):442-455
Regulation of progenitor cell fate determines the numbers of neurons in the developing brain. While proliferation of neural progenitors predominates during early central nervous system (CNS) development, progenitor cell fate shifts toward differentiation as CNS circuits develop, suggesting that signals from developing circuits may regulate proliferation and differentiation. We tested whether activity regulates neurogenesis in?vivo in the developing visual system of Xenopus tadpoles. Both cell proliferation and the number of musashi1-immunoreactive progenitors in the optic tectum decrease as visual system connections become stronger. Visual deprivation for 2?days increased proliferation of musashi1-immunoreactive radial glial progenitors, while visual experience increased neuronal differentiation. Morpholino-mediated knockdown and overexpression of musashi1 indicate that musashi1 is necessary and sufficient for neural progenitor proliferation in the CNS. These data demonstrate a mechanism by which increased brain activity in developing circuits decreases cell proliferation and increases neuronal differentiation through the downregulation of musashi1 in response to circuit activity.  相似文献   

19.
The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period, neuroblasts generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending terminal axonal and dendritic branches into defined volumes of the brain neuropil. We call the overall projection pattern of neurons forming a given lineage the “projection envelope” of that lineage. By inducing MARCM clones at the early larval stage, we labeled the secondary progeny of each neuroblast. For the supraesophageal ganglion excluding mushroom body (the part of the brain investigated in the present work) we obtained 81 different types of clones. Based on the trajectory of their secondary axon tracts (described in the accompanying paper, Lovick et al., 2013), we assigned these clones to specific lineages defined in the larva. Since a labeled clone reveals all aspects (cell bodies, axon tracts, terminal arborization) of a lineage, we were able to describe projection envelopes for all secondary lineages of the supraesophageal ganglion. This work provides a framework by which the secondary neurons (forming the vast majority of adult brain neurons) can be assigned to genetically and developmentally defined groups. It also represents a step towards the goal to establish, for each lineage, the link between its mature anatomical and functional phenotype, and the genetic make-up of the neuroblast it descends from.  相似文献   

20.
The median neuroblast lineage of grasshopper has provided a model for the development of differing neuronal types within the insect central nervous system. According to the prevailing model, neurons of different types are produced in sequence. Contrary to this, we show that each ganglion mother cell from the median neuroblast produces two neurons of asymmetric type: one is Engrailed positive (of interneuronal fate); and one is Engrailed negative (of efferent fate). The mature neuronal population, however, results from differential neuronal death. This yields many interneurons and relatively few efferent neurons. Also contrary to previous reports, we find no evidence for glial production by the median neuroblast. We discuss evidence that neuronal lineages typically produce asymmetric progeny, an outcome that has important developmental and evolutionary implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号