首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex differences in blood pressure are evident in experimental models and human subjects, yet the mechanisms underlying this disparity remain equivocal. The current study sought to define the extent of male-female differences in the circulating and tissue renin-angiotensin aldosterone systems (RAASs) of congenic mRen(2). Lewis and control Lewis rats. Male congenics exhibited higher systolic blood pressure than females [200 +/- 4 vs. 146 +/- 7 mmHg, P < 0.01] or Lewis males and females [113 +/- 2 vs. 112 +/- 2 mmHg, P > 0.05]. Plasma ANG II levels were twofold higher in male congenics [47 +/- 3 vs. 19 +/- 3 pM, P < 0.01] and fivefold higher than in male or female Lewis rats [6 +/- 1 vs. 6 +/- 1 pM]. ANG I levels were also highest in the males; however, plasma ANG-(1-7) was higher in female congenics. Male congenics exhibited greater circulating renin and angiotensin-converting enzyme (ACE) activities, as well as angiotensinogen, than female littermates. Renal cortical and medullary ANG II levels were also higher in the male congenics versus all the other groups; ANG I was lower in the males. Cortical ACE2 activity was higher in male congenics, yet neprilysin activity and protein were greater in the females, which may contribute to reduced renal levels of ANG II. These data reveal that sex differences in both the circulating and renal RAAS are apparent primarily in the hypertensive group. The enhanced activity of the RAAS in male congenics may contribute to the higher pressure and tissue injury evident in the strain.  相似文献   

2.
Estrogen depletion markedly exacerbates hypertension in female congenic mRen2. Lewis rats, a model of tissue renin overexpression. Because estrogen influences nitric oxide synthase (NOS) and NO may exert differential effects on blood pressure, the present study investigated the functional expression of NOS isoforms in the kidney of ovariectomized (OVX) mRen2. Lewis rats. OVX-mRen2. Lewis exhibited an increase in systolic blood pressure (SBP) of 171 +/- 5 vs. 141 +/- 7 mmHg (P < 0.01) for intact littermates. Renal cortical mRNA and protein levels for endothelial NOS (eNOS) were reduced 50-60% (P < 0.05) and negatively correlated with blood pressure. In contrast, cortical neuronal NOS (nNOS) mRNA and protein levels increased 100 to 300% (P < 0.05). In the OVX kidney, nNOS immunostaining was more evident in the macula densa, cortical tubules, and the medullary collecting ducts compared with the intact group. To determine whether the increase in renal nNOS expression constitutes a compensatory response to the reduction in renal eNOS, we treated both intact and OVX mRen2. Lewis rats with the selective nNOS inhibitor L-VNIO from 11 to 15 wk of age. The nNOS inhibitor reduced blood pressure in the OVX group (185 +/- 3 vs. 151 +/- 8 mmHg, P < 0.05), but pressure was not altered in the intact group (146 +/- 4 vs. 151 +/- 4 mmHg). In summary, exacerbation of blood pressure in the OVX mRen2. Lewis rats was associated with the discoordinate regulation of renal NOS isoforms. Estrogen sensitivity in this congenic strain may involve the influence of NO through the regulation of both eNOS and nNOS.  相似文献   

3.
Studies in experimental animals and younger women suggest a protective role for estrogen; however, clinical trials may not substantiate this effect in older females. Therefore, the present study assessed the outcome of ovariectomy in older mRen2. Lewis rats subjected to a high-salt diet for 4 wk. Intact or ovariectomized (OVX, 15 wk of age) mRen2. Lewis rats were aged to 60 wk and then placed on a high-salt (HS, 8% sodium chloride) diet for 4 wk. Systolic blood pressures were similar between groups [OVX 169 +/- 6 vs. Intact 182 +/- 7 mmHg; P = 0.22] after the 4-wk diet; however, proteinuria [OVX 0.8 +/- 0.2 vs. Intact 11.5 +/- 2.6 mg/mg creatinine; P < 0.002, n = 6], renal interstitial fibrosis, glomerular sclerosis, and tubular casts were lower in OVX vs. Intact rats. Kidney injury molecule-1 mRNA, a marker of tubular damage, was 53% lower in the OVX HS group. Independent from blood pressure, OVX HS rats exhibited significantly lower cardiac (24%) and renal (32%) hypertrophy as well as lower C-reactive protein (28%). Circulating insulin-like growth factor-I (IGF-I) levels were not different between the Intact and OVX groups; however, renal cortical IGF-I mRNA and protein were attenuated in OVX rats [P < 0.05, n = 6]. We conclude that ovariectomy in the older female mRen2. Lewis rat conveys protection against salt-dependent increase in renal injury.  相似文献   

4.
Background: Male-female differences in the expression of hypertension and in end-organ damage are evident in both experimental models and human subjects, with males exhibiting a more rapid onset of cardiovascular disease and mortality than do females. The basis for these male-female differences is probably the balance of the complex effects of sex steroids (androgens, estrogen, progesterone) and their metabolites on the multiple regulatory systems that influence blood pressure (BP). A key target of estrogen and other steroids is likely to be the different components of the renin-angiotensin-aldosterone system (RAAS).Objective: The aim of this study was to review the current experimental evidence on the protective effects of estrogen in hypertensive models.Methods: The search terms estrogen , renin-aangiotensin-aldosterone system, renin receptor, salt-sensitivity, endorgan damage, hypertension, kidney, mRen2.Lewis, and injury markers were used to identify relevant publications in the PubMed database (restricted to the English language) from January 1990 to October 2007.Results: In a new congenic model that expresses the mouse renin 2 gene (mRen2.Lewis), estrogen depletion (via ovariectomy [OVX ]) in young rats was found to have a marked stimulatory effect on the progression of increased BP and cardiac dysfunction. Moreover, estrogen depletion exacerbated salt-sensitive hypertension and the extent of salt-induced cardiac and renal injury in young mRen2.Lewis rats, which probably reflected the inability to appropriately regulate various components of the RAAS. However, OVX in aged mRen2.Lewis rats conveyed renal protective effects from a high-salt diet compared with intact hypertensive littermates (64 weeks), and these effects were independent of changes in BP.Conclusion: These studies in hypertensive mRen2.Lewis rats underscored the influence of ovarian hormones on BP and tissue injury, as well as the plasticity of this response, apparently due to age and salt status.  相似文献   

5.
The angiotensin-converting enzyme (ACE)/Angiotensin II (Ang II) and angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) (Ang-(1-7)) pathways are coexpressed in most tissues. The balance between these pathways determines, at least in part, whether tissue damage will occur in response to pathological stimuli. The present study tested the hypothesis that male sex and high blood pressure are associated with ACE/ACE2 imbalance in the lungs. Experiments were conducted in male and female Wistar rats and spontaneously hypertensive rats (SHRs). Lung ACE and ACE2 gene expression was also evaluated in normotensive and hypertensive humans using the Genotype-Tissue Expression (GTEx) project. Compared with Wistar rats and female SHRs, male SHRs displayed reduced lung ACE2 mRNA, ACE2 protein abundance and ACE2 activity, and increased Ang II concentration. Lung ACE mRNA levels were higher in male SHRs than in Wistar rats, whereas lung ACE protein abundance and activity were similar among the four groups of rats. Lung Ang-(1-7) concentration was higher in female than in male SHRs (89 ± 17 vs. 43 ± 2 pg/g, P<0.05). Lung ACE to ACE2 mRNA expression in hypertensive patients was significantly higher than that in normotensive subjects. Taken together, these results demonstrate that male hypertensive rats display imbalance between the ACE/Ang II and ACE2/Ang-(1-7) pathways in the lungs mainly attributable to ACE2 down-regulation. Further studies should be conducted to investigate whether this imbalance between ACE/ACE2 may promote and accelerate lung injury in respiratory infections, including coronavirus disease 2019 (COVID-19).  相似文献   

6.
The present study was performed to evaluate the role of neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) during the developmental phase of hypertension in transgenic rats harboring the mouse Ren-2 renin gene (TGR). The first aim of the present study was to examine nNOS mRNA expression in the renal cortex and to assess the renal functional responses to intrarenal nNOS inhibition by S-methyl-L-thiocitrulline (L-SMTC) in heterozygous TGR and in age-matched transgene-negative Hannover Sprague-Dawley rats (HanSD). The second aim was to evaluate the role of the renal sympathetic nerves in mediating the renal functional responses to intrarenal nNOS inhibition. Thus, we also evaluated the effects of intrarenal L-SMTC administration in acutely denervated TGR and HanSD. Expression of nNOS mRNA in the renal cortex was significantly increased in TGR compared with HanSD. Intrarenal administration of L-SMTC decreased the glomerular filtration rate (GFR), renal plasma flow (RPF) and sodium excretion and increased renal vascular resistance (RVR) in HanSD. In contrast, intrarenal inhibition of nNOS by L-SMTC did not alter GFR, RPF or RVR and elicited a marked increase in sodium excretion in TGR. This effect of intrarenal L-SMTC was not observed in acutely denervated TGR. These results suggest that during the developmental phase of hypertension TGR exhibit an impaired renal vascular responsiveness to nNOS derived NO or an impaired ability to release NO by nNOS despite enhanced expression of nNOS mRNA in the renal cortex. In addition, the data indicate that nNOS-derived NO increases tubular sodium reabsorption in TGR and that the renal nerves play an important modulatory role in this process.  相似文献   

7.
Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang‐(1‐7)/Mas receptor axis, renin‐angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT‐PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up‐regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang‐(1‐7) in organ response to the developing hypertension in SHRs.  相似文献   

8.

Introduction

The G protein-coupled estrogen receptor (GPER) is expressed in various tissues including the heart. Since the mRen2.Lewis strain exhibits salt-dependent hypertension and early diastolic dysfunction, we assessed the effects of the GPER agonist (G-1, 40 nmol/kg/hr for 14 days) or vehicle (VEH, DMSO/EtOH) on cardiac function and structure.

Methods

Intact female mRen2.Lewis rats were fed a normal salt (0.5% sodium; NS) diet or a high salt (4% sodium; HS) diet for 10 weeks beginning at 5 weeks of age.

Results

Prolonged intake of HS in mRen2.Lewis females resulted in significantly increased blood pressure, mildly reduced systolic function, and left ventricular (LV) diastolic compliance (as signified by a reduced E deceleration time and E deceleration slope), increased relative wall thickness, myocyte size, and mid-myocardial interstitial and perivascular fibrosis. G-1 administration attenuated wall thickness and myocyte hypertrophy, with nominal effects on blood pressure, LV systolic function, LV compliance and cardiac fibrosis in the HS group. G-1 treatment significantly increased LV lusitropy [early mitral annular descent (e′)] independent of prevailing salt, and improved the e′/a′ ratio in HS versus NS rats (P<0.05) as determined by tissue Doppler.

Conclusion

Activation of GPER improved myocardial relaxation in the hypertensive female mRen2.Lewis rat and reduced cardiac myocyte hypertrophy and wall thickness in those rats fed a high salt diet. Moreover, these advantageous effects of the GPER agonist on ventricular lusitropy and remodeling do not appear to be associated with overt changes in blood pressure.  相似文献   

9.
The cardioprotective effects of estrogen are well recognized, but the mechanisms remain poorly understood. Accumulating evidence suggests that the local cardiac renin-angiotensin system (RAS) is involved in the development and progression of cardiac hypertrophy, remodeling, and heart failure. Estrogen attenuates the effects of an activated circulating RAS; however, its role in regulating the cardiac RAS is unclear. Bilateral oophorectomy (OVX; n = 17) or sham-operation (Sham; n = 13) was performed in 4-week-old, female mRen2.Lewis rats. At 11 weeks of age, the rats were randomized and received either 17 β-estradiol (E2, 36 µg/pellet, 60-day release, n = 8) or vehicle (OVX-V, n = 9) for 4 weeks. The rats were sacrificed, and blood and hearts were used to determine protein and/or gene expression of circulating and tissue RAS components. E2 treatment minimized the rise in circulating angiotensin (Ang) II and aldosterone produced by loss of ovarian estrogens. Chronic E2 also attenuated OVX-associated increases in cardiac Ang II, Ang-(1–7) content, chymase gene expression, and mast cell number. Neither OVX nor OVX+E2 altered cardiac expression or activity of renin, angiotensinogen, angiotensin-converting enzyme (ACE), and Ang II type 1 receptor (AT1R). E2 treatment in OVX rats significantly decreased gene expression of MMP-9, ACE2, and Ang-(1–7) mas receptor, in comparison to sham-operated and OVX littermates. E2 treatment appears to inhibit upsurges in cardiac Ang II expression in the OVX-mRen2 rat, possibly by reducing chymase-dependent Ang II formation. Further studies are warranted to determine whether an E2-mediated reduction in cardiac chymase directly contributes to this response in OVX rats.  相似文献   

10.
Alterations in the balance between ANG II/ACE and ANG 1-7/ACE2 in ANG II-dependent hypertension could reduce the generation of ANG 1-7 and contribute further to increased intrarenal ANG II. Upregulation of collecting duct (CD) renin may lead to increased ANG II formation during ANG II-dependent hypertension, thus contributing to this imbalance. We measured ANG I, ANG II, and ANG 1-7 contents, angiotensin-converting enzyme (ACE) and ACE2 gene expression, and renin activity in the renal cortex and medulla in the clipped kidneys (CK) and nonclipped kidneys (NCK) of 2K1C rats. After 3 wk of unilateral renal clipping, systolic blood pressure and plasma renin activity increased in 2K1C rats (n = 11) compared with sham rats (n = 9). Renal medullary angiotensin peptide levels were increased in 2K1C rats [ANG I: (CK = 171 ± 4; NCK = 251 ± 8 vs. sham = 55 ± 3 pg/g protein; P < 0.05); ANG II: (CK = 558 ± 79; NCK = 328 ± 18 vs. sham = 94 ± 7 pg/g protein; P < 0.001)]; and ANG 1-7 levels decreased (CK = 18 ± 2; NCK = 19 ± 2 pg/g vs. sham = 63 ± 10 pg/g; P < 0.001). In renal medullas of both kidneys of 2K1C rats, ACE mRNA levels and activity increased but ACE2 decreased. In further studies, we compared renal ACE and ACE2 mRNA levels and their activities from chronic ANG II-infused (n = 6) and sham-operated rats (n = 5). Although the ACE mRNA levels did not differ between ANG II rats and sham rats, the ANG II rats exhibited greater ACE activity and reduced ACE2 mRNA levels and activity. Renal medullary renin activity was similar in the CK and NCK of 2K1C rats but higher compared with sham. Thus, the differential regulation of ACE and ACE2 along with the upregulation of CD renin in both the CK and NCK in 2K1C hypertensive rats indicates that they are independent of perfusion pressure and contribute to the altered content of intrarenal ANG II and ANG 1-7.  相似文献   

11.
The present study determined whether early loss of estrogen influences salt-sensitive changes in blood pressure, renal injury, and cardiac hypertrophy as well as the effects on the circulating renin-angiotensin-aldosterone system (RAAS) in the hypertensive female mRen(2). Lewis strain. Ovariectomy (OVX) of heterozygous mRen(2). Lewis rats on a normal salt (NS) diet (0.5% sodium) increased systolic blood pressure from 137+/-3 to 177+/-5 mmHg (P<0.01) by 15 wk but did not show any changes in cardiac-to-body weight index (CI), proteinuria, or creatinine clearance. Maintenance with a high-sodium (HS) diet (4%) increased blood pressure (203+/-4 mmHg, P<0.01), proteinuria (3.5+/-0.3 vs. 6.4+/-0.7 mg/day, P<0.05), and CI (4.0+/-0.1 vs. 5.2+/-0.1 mg/kg, P<0.01) but decreased creatinine clearance (0.89+/-0.15 vs. 0.54+/-0.06 ml/min, P<0.05). OVX exacerbated the effects of salt on the degree of hypertension (230+/-5 mmHg), CI (5.6+/-0.2 mg/kg), and proteinuria (13+/-3.0 mg/day). OVX increased the urinary excretion of aldosterone approximately twofold in animals on the NS diet (3.8+/-0.5 vs. 6.6+/-0.5 ng.mg creatinine-1.day-1, P<0.05) and HS diet (1.4+/-0.2 vs. 4.5+/-1.0 ng.mg creatinine-1.day-1, P<0.05). Circulating renin, angiotensin-converting enzyme, and angiotensin II were also significantly increased in the OVX group fed a HS diet. These results reveal that the protective effects of estrogen apart from the increase in blood pressure were only manifested in the setting of a chronic HS diet and suggest that the underlying sodium status may have an important influence on the overall effect of reduced estrogen.  相似文献   

12.
Despite its usefulness as a nongenetic model of hypertension, little information is available regarding baroreflex function in the Grollman, renal wrap model of hypertension in the rat. Baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) were studied in male, Sprague-Dawley rats hypertensive (HT) for 1 or 4-6 wk after unilateral nephrectomy and figure-8 ligature around the remaining kidney or normotensive (NT) after sham surgery. Rats were anesthetized with Inactin and RSNA, and HR was recorded during intravenous infusions of sodium nitroprusside or phenylephrine to lower or raise mean arterial pressure (MAP). Response curves were analyzed using a logistic sigmoid function. In 1- and 4-wk HT rats the midpoints of RSNA and HR reflex curves were shifted to the right (P < 0.05). Comparing NT to 1- or 4-wk HT rats, the gain of RSNA-MAP curves was no different; however, gain was reduced in the HR-MAP curves at both 1 and 4 wk in HT rats (P < 0.05). In anesthetized rats the HR range was small; therefore, MAP and HR were measured in conscious rats during intravenous injections of three doses of phenylephrine and three doses of sodium nitroprusside. Linear regressions revealed a reduced slope in both 1- and 4-wk HT rats compared with NT rats (P < 0.05). The results indicate that baroreflex curves are shifted to the right, to higher pressures, in hypertension. After 1-4 wk of hypertension the gain of baroreflex regulation of RSNA is not altered; however, the gain of HR regulation is reduced.  相似文献   

13.
The present work aimed to assess, in Lyon hypertensive (LH) rats, whether an early and prolonged inhibition of the renin-angiotensin system (RAS) could result in a blood pressure (BP) lowering and nephroprotection that persist after its withdrawal. Male LH rats received orally from 3 to 12 wk of age either an angiotensin-converting enzyme inhibitor perindopril at the doses of 0.4 and 3 mg x kg(-1) x day(-1) or an AT(1) receptor antagonist losartan at the dose of 10 mg x kg(-1) x day(-1). BP, histological changes in the kidney, and urinary protein excretion were examined during and 10 wk after cessation of the treatments. Both perindopril and losartan decreased BP, prevented renal lesions, and limited urinary protein excretion. After cessation of the treatment, BP returned to the level of never-treated LH rats in rats having received 3 mg x kg(-1) x day(-1) of perindopril while it remained slightly lower in those treated with 0.4 mg x kg(-1) x day(-1) of perindopril or with losartan. This lack of marked persistent antihypertensive effect contrasted with a durable decrease in urinary protein excretion and improvement of the renal histological lesions. In conclusion, it is possible to separate the BP-lowering effects of RAS blockade from those on glomerulosclerosis and urinary protein excretion.  相似文献   

14.
In the light of previous reports suggesting a common abnormality of Ca handling in most tissues of hypertensive humans and rats, we applied a novel technique using the fluorescent probe Quin 2 for measurement of cytosolic free Ca2+ in lymphocytes of spontaneously hypertensive rats (SHR). (Ca2+)i is increased in SHR (122.1 +/- 7.4 nM) versus normotensive Wistar-Kyoto (WKY) control rats (81.1 +/- 6.3 nM) Membrane exchange, as challenged by varying the extracellular Ca concentration over a 10(5)-fold range proved to be relatively unimportant in regulating (Ca2+)i and did not significantly affect the difference between SHR and WKY. Catecholamines and ouabain had no appreciable effect on (Ca2+)i. The mechanisms of increased (Ca2+)i in SHR lymphocytes remain to be fully elucidated.  相似文献   

15.
The factors that control adrenal steroid secretion and metabolism were investigated in rats made diabetic with Streptozotocin (65 mg/kg) and used one month after treatment. Diabetic animals possessed high resting levels of plasma corticosterone accompanied by adrenal hypertrophy; the showed an increased response to the stress of i.p. cold water injection. Moreover, the pituitaries of diabetic rats seemed to be releasing ACTH continuously and not storing it. Upon adrenal inhibition with Aminoglutethimide the expected increase in adrenal cholesterol and weight was of a smaller magnitude than in controls. The activity of liver enzymes that reduce ring A of corticosterone showed decreased activity in diabetics, which suggests that more corticosterone rather than its inactive metabolites were available to--but not able to suppress--the steroid feedback sites. The half-life of corticosterone in blood was similar in diabetes and controls. These results suggest that (a) diabetic animals were in a chronic stress condition; (b) the threshold for steroid feedback was less sensitive to variations in plasma corticosterone; (c) there is an abnormal peripheral disposal of corticosterone, but that other factors, besides the liver, regulate the clearance of the hormone from the circulation in the diabetic animals.  相似文献   

16.
Minerals in renal and SHR hypertensive rats   总被引:1,自引:0,他引:1  
References to individual trace minerals in hypertensive rats have been made; however, data on multiple minerals in SHR hypertensive rats is lacking. The purpose of this study was to investigate five trace minerals in normotensive, chronic renal and SHR hypertensive rats. Blood samples were drawn to measure serum levels of Ca, Fe, K, Mg, and Na. Serum K values were elevated in the chronic renal hypertensive animals. Iron levels were decreased in both the renal and SHR hypertensive animals. No difference was observed in levels of Ca, Mg, and Na between normotensive and chronic renal or SHR hypertensive rats. Further study of multiple trace minerals in experimental hypertension is recorded in order to extend these deviations.  相似文献   

17.
18.
The influence of endurance training on functional capacity [maximal O2 consumption (VO2 max)], caudal arterial blood pressure, and myocardial capillary density were investigated in normotensive rats and rats made hypertensive using the two-kidney one-clip approach (Goldblatt's hypertension). Male Sprague-Dawley rats were assigned to sham (N: 120-140 mmHg), moderately hypertensive (MH = 0.30-mm clips, 150-170 mmHg), or severely hypertensive (SH = 0.25-mm clips, 190-230 mmHg) groups. Rats designated to be runners (T) were exercised on a motor-driven treadmill equal to 50-70% of their VO2 max values for 8-12 wk. Compared with their nontrained (NT) controls, training was associated with significantly higher VO2 max values (12-15%) and muscle cytochrome-c oxidase activities (33-78%). Resting systolic blood pressure was not significantly changed in the N-and MH-T subgroups; however, it was 20-30 mmHg higher in the SH-T subgroup. Mean absolute heart weight for only the N-T group was significantly heavier than their NT controls. However, the mean predicted heart weights (heart wt = 0.639 X body wt of N-NT + 0.001 g) of the two SH groups were significantly higher than expected. The SH-T group had a lower (11%) subepicardial capillary density mean than its NT control and significantly fewer capillaries in the subendocardial region than the other five subgroups. It was concluded that moderate exercise training appeared to be detrimental to rats with severe hypertension because it increased resting blood pressure and decreased myocardial capillary density, even though it improved their functioning capacity.  相似文献   

19.
The present study was designed to determine whether estrogen modulates the angiotensin processing enzymes in membrane homogenates obtained from uterus and kidney cortex and medulla of Sprague-Dawley (SD) and heterozygous (mRen2)27-transgenic hypertensive (Tg(+)) female rats treated with or without 17beta-estradiol (E2). We evaluated estrogen's influence on neprilysin (NEP), an endopeptidase that forms angiotensin-(1-7) [Ang-(1-7)] and on aminopeptidase (AMP), which degrades Ang-(1-7). Renal tissue from normotensive and hypertensive male rats was also evaluated. E2 up-regulated NEP mRNA in the uterus of both SD and Tg(+) and this was associated with increased NEP activity in the uterus of SD (0.31+/-0.03 nmol/min/mg versus 0.18+/-0.04 nmol/min/mg of protein, p<0.05) and Tg(+) (0.26+/-0.04 nmol/min/mg versus 0.13+/-0.02 nmol/min/mg of protein, p<0.05) female). E2 had no significant effect on NEP activity in cortex and medulla of hypertensive and normotensive female. In female animals, cortical NEP activity is two-fold higher than medullary; in males there is a four-fold higher cortical NEP activity as compared to medulla. In male animals, medullary NEP was significantly lower than females with or without E2 treatment; no gender specific effect was found in cortex. E2 treatment also caused a two-fold increase in AMP activity in the uterus and 1.6-fold decrease in kidney cortex of SD and Tg(+) female (p<0.05). Our studies indicate that NEP may be a primary candidate for increased Ang-(1-7) processing in the uterus with estrogen treatment; kidney NEP, on the other hand, showed no modulation by estrogen, suggesting that down regulation of other processing enzymes, like AMP and ACE, may come into play in the kidney with estrogen replacement. In addition, these studies showed that there is tissue-specific regulation of NEP with estrogen treatment that is strain independent.  相似文献   

20.
Clinical trials revealed that estrogen may result in cardiovascular risk in patients with coronary heart disease, despite earlier studies demonstrating that estrogen provided cardiovascular protection. It is possible that the preexisting condition of hypertension and the ability of estrogen to activate the renin-angiotensin system could confound its beneficial effects. Our hypothesis is that the attenuation of estrogen to agonist-induced vasoconstrictor responses through the activation of nitric oxide (NO) synthase (NOS) is impaired by hypertension. We investigated the effects of 17beta-estradiol (E(2)) replacement in normotensive Sprague-Dawley (SD) and (mRen2)27 hypertensive transgenic (TG) rats on contractile responses to three vasoconstrictors, angiotensin II (ANG II), serotonin (5-HT), and phenylephrine (PE), and on the modulatory role of vascular NO to these responses. The aorta was isolated from ovariectomized SD and TG rats treated chronically with 5 mg E(2) or placebo (P). The isometric tension of the aortic rings was measured in organ chambers, and endothelial NOS (eNOS) in the rat aorta was detected using Western blot analysis. E(2) treatment increased eNOS expression in the SD and TG aorta and reduced ANG II- and 5-HT- but not PE-induced contractions in SD and TG rats. The inhibition of NOS with N(omega)-nitro-L-arginine methyl ester enhanced ANG II-, 5-HT-, and PE-induced contractions in P-treated and ANG II and PE responses in E(2)-treated SD and TG rats. Only the responses to 5-HT were augmented in hypertensive rats. In conclusion, this study shows that the preexisting condition of hypertension augmented the vascular responsiveness of 5-HT, whereas the attenuation of estrogen by ANG II and 5-HT vascular responses was not impaired by hypertension. The adrenergic agonist was unresponsive to estrogen treatment. The contribution of NO as a factor contributing to the relative refractoriness of the vascular responses is dependent on the nature of the vasoconstrictor and/or the presence of estrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号