首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
糖皮质激素受体(GR)在严重创伤早期及全身性炎症反应中具有重要作用,为寻找与GR相互作用的新的蛋白质,以期调节GR的功能活性,应用酵母双杂交技术,以糖皮质激素受体配体结合区(GR-LBD)为诱饵蛋白,在人骨髓cDNA文库中筛选到42个阳性克隆.测序结果表明,其中一个克隆为干扰素诱导蛋白P56的大部分编码序列(221~1 642 bp,编码第53位至第478位氨基酸).利用酵母双杂交实验再次验证P56与GR具有结合作用.并用PCR方法从酵母质粒中扩增出P56片段,进行GST-P56原核融合蛋白表达与纯化,及真核表达与免疫共沉淀.蛋白质结合实验表明,P56与GR-LBD在体内外有结合作用.CAT报告基因检测表明P56抑制GR的转录激活能力.  相似文献   

3.
4.
The regulation of cell function by fibroblast growth factors (FGFs) classically occurs through a dual receptor system of a tyrosine kinase receptor (FGFR) and a heparan sulfate proteoglycan co-receptor. Mutations in some consensus N-glycosylation sites in human FGFR result in skeletal disorders and craniosynostosis syndromes, and biophysical studies in vitro suggest that N-glycosylation of FGFR alters ligand and heparan sulfate binding properties. The evolutionarily conserved FGFR signaling system of Caenorhabditis elegans has been used to assess the role of N-glycosylation in the regulation of FGFR signaling in vivo. The C. elegans FGF receptor, EGL-15, is N-glycosylated in vivo, and genetic substitution of specific consensus N-glycosylation sites leads to defects in the maintenance of fluid homeostasis and differentiation of sex muscles, both of which are phenotypes previously associated with hyperactive EGL-15 signaling. These phenotypes are suppressed by hypoactive mutations in EGL-15 downstream signaling components or activating mutations in the phosphatidylinositol 3-kinase pathway, respectively. The results show that N-glycans negatively regulate FGFR activity in vivo supporting the notion that mutation of N-glycosylation sites in human FGFR may lead to inappropriate activation of the receptor.  相似文献   

5.
6.
Miniature chromosome maintenance 7 (MCM7) is an essential component of DNA replication licensing complex. Recent studies indicate that MCM7 is amplified and overexpressed in a variety of human malignancies. In this report, we show that MCM7 binds SF3B3. The binding motif is located in the N terminus (amino acids 221–248) of MCM7. Knockdown of MCM7 or SF3B3 significantly increased unspliced RNA of epidermal growth factor receptor, platelet-derived growth factor receptor, and c-Met. A dramatic drop of reporter gene expression of the oxytocin exon 1-intron-exon 2-EGFP construct was also identified in SF3B3 and MCM7 knockdown PC3 and DU145 cells. The MCM7 or SF3B3 depleted cell extract failed to splice reporter RNA in in vitro RNA splicing analyses. Knockdown of SF3B3 and MCM7 leads to an increase of cell death of both PC3 and DU145 cells. Such cell death induction is partially rescued by expressing spliced c-Met. To our knowledge, this is the first report suggesting that MCM7 is a critical RNA splicing factor, thus giving significant new insight into the oncogenic activity of this protein.  相似文献   

7.
The lethal factor (LF) of Bacillus anthracis is a Zn2+-dependent metalloprotease which plays an important role in anthrax virulence. This study was aimed at identifying the histidine residues that are essential to the catalytic activities of LF. The site-directed mutagenesis was employed to replace the 10 histidine residues in domains II, III, and IV of LF with alanine residues, respectively. The cytotoxicity of these mutants was tested, and the results revealed that the alanine substitution for His-669 completely abolished toxicity to the lethal toxin (LT)-sensitive RAW264.7 cells. The reason for the toxicity loss was further explored. The zinc content of this LF mutant was the same as that of the wild type. Also this LF mutant retained its protective antigan (PA)-binding activity. Finally, the catalytic cleavage activity of this mutant was demonstrated to be drastically reduced. Thus, we conclude that residue His-669 is crucial to the proteolytic activity of LF.Anthrax is a zoonotic disease caused by toxigenic strains of the Gram-positive bacterium Bacillus anthracis (24). Because infections are highly fatal, the organisms are easily produced, and the spores spread easily, B. anthracis has been used as a bioweapon in biological war and biological terrorism (38). If inhaled, the spores are phagocytosed by alveolar macrophages, where they germinate to produce vegetative bacteria (10, 24). The vegetative bacteria further release anthrax toxins, which inhibit the innate and adaptive immune responses of the hosts. This enables the capsulated bacteria to escape the lymph node defense barrier to reach the blood system, causing bacteremia and toxemia, which can rapidly kill the hosts (24, 26). The great threat posed by anthrax to the public is not only due to the highly lethal rate of inhaled anthrax, but also is due to the social panic caused by the lethality. Therefore, efficient ways to defend against anthrax infection and spreading are greatly needed. This mostly depends on a full understanding of the mechanisms of anthrax infection and toxicities.Anthrax toxins are the dominant virulence factors of Bacillus anthracis (6, 33, 37). They consist of three proteins: protective antigen (PA; 83 kDa), lethal factor (LF; 90 kDa), and edema factor (EF; 89 kDa). The 83-kDa PA (PA83) directly binds to cellular membrane receptors and was cleaved to an active fragment of 63-kDa PA (PA63) by cellular proteases of the furin family or by serum proteases. The receptor-bound portion of PA63 self-assembles into either ring-shaped heptamers, which bind to three molecules of LF and/or EF, resulting in (PA63)7(LF/EF)3 (21), or octamers which bind up to four molecules of these moieties, resulting in (PA63)8(LF/EF)4 complexes (16, 17). The catalytic partners (EF and/or LF) are subsequently transported across the membrane to the cell cytosol (24, 27). EF is a Ca2+- and calmodulin-dependent adenylate cyclase that, together with PA, forms edema toxin. EF causes a rapid increase in intracellular cyclic AMP (cAMP) levels in host cells and alters the elaborate balance of intracellular signaling pathways (20, 23). LF is a Zn2+-dependent protease that, together with PA, forms lethal toxin (LT). It is a dominant virulence factor and the major cause of death for the B. anthracis-infected animals (1, 29, 30). LF specifically cleaves the N-terminal domain of mitogen-activated protein kinase kinases (MAPKKs) (11, 35). Because the N-terminal domain of MAPKKs is essential for the interaction between MAPKKs and MAPKs, the cleavage of this domain impairs the activation of MAPKs (8, 11, 15) and leads to the inhibition of three major cellular signaling pathways—the ERK (extracellular signal-regulated kinase), p38, and JNK (c-Jun N-terminal kinase) pathways (29, 31)—and thus induces the lysis of the host cells in an unknown mechanism.The crystal structure of LF with the N-terminal domain of MEK2 has been reported (28). LF has 776 amino acids and comprises four different domains. Domain I (residues 1 to 254) is a PA-binding domain which delivers the remaining domains of the LF to the cell cytoplasm (3). The interface among domains II, III, and IV creates long, deep, 40-Å-long catalytic grooves into which the N terminus of MEK fits and forms an active site complex (28). Domain IV is central to catalytic activities of LF, containing two zinc-binding motifs (residues 686 to 690 and residues E735 to E739) and bound to a single Zn ion (18). However, which residues of LF are critical for efficient catalytic activities and execute the substrate cleavage remains unclear.Histidine is the only naturally occurring amino acid to contain an imidazole residue as a side chain. The catalytic activity of histidine mostly depends on the special features of the imidazole residue. The logarithm of the proton dissociation constant of imidazolyl in the histidine residue is about 6.5; thus, under the physiological condition, it tends to form hydrogen bonds and shares donor and acceptor properties that can take part in either nucleophilic or base catalysis. The speed of the imidazole residue to give or accept protons is very fast, with a half-life of less than 10 s. So in the process of natural selection, histidine was chosen as the catalytic structure, indicating that it plays an important role in the catalysis process of enzymes (9, 12, 14). There are 21 histidines in LF, with 9 of them in LF domain I and 12 of them in domains II, III, and IV. The histidine residues important to LF activities in domain I have been identified (2, 22). The other 12 histidine residues in the remaining three domains include His-277, His-280, and His-424 in domain II; His-309 in domain III; and His-588, His-645, His-654, His-669, His-686, His-690, His-745, and His-749 in domain IV (28). His-686 and His-690 in domain IV were demonstrated to form a zinc binding site constituting a thermolysin-like zinc metalloprotease motif, HEXXH (18). The activities of the remaining 10 histidine residues in domains II, III, and IV have not been explored yet. In this study, we replaced these 10 histidine residues separately with alanine residues by site-directed mutagenesis. By the cytotoxicity assay of all these mutants, the H669A mutant was found to lose cell toxicity completely. Further assay revealed that residue His-669 was involved in neither zinc stabilization nor PA binding but participated in the substrate proteolytic activity of LF.  相似文献   

8.
9.
The glucocorticoid receptor (GR) has multiple phosphorylation sites that can be activated by MAPKs, which have been previously shown to be activated in response to cyclic stretch in endothelial cells. It is possible therefore that physiological and/or pathological degree of cyclic stretch may also initiate phosphorylation-induced changes in GR subcellular localization as we previously showed with shear stress. However, little is known about the effects of cyclic stretch on glucocorticoid receptor (GR) activity in endothelial cells. We used control and lamin shRNA BAECs and subjected them to ligand (dexamethasone) treatment, physiological stretch (10% at 1 Hz), or pathological stretch (20% at 1 Hz or 10% at 2 Hz), in order to evaluate GR nuclear translocation in endothelial cells with and without lamin A/C as well as potential upstream protein regulators of GR subcellular movement during cyclic stretch. Upon exposure to pathological degrees of stretching, control shRNA BAECs showed greater nuclear concentration of GR at each time point compared to when they were stretched at physiological parameters. The response of GR in lamin-deficient cells to cyclic stretching was relatively non-existent compared to that observed in control shRNA cells. Our results suggest that in cells with lamin A/C, cyclic stretch activates GR through the JNK pathway, and ERK has some inhibitory role on GR nuclear translocation. DUSP proteins become upregulated in response to stretch as a result of GR activation (DUSP1) or by stretch-induced MAPK signaling. In lamin-deficient cells, only the combination of cyclic stretch and p38 inhibition was able to induce marginal nuclear translocation. Increased MAPK phosphorylation due to lamin A/C absence could drive DUSP expression as a negative feedback mechanism. Upregulation of the cytoplasmic DUSP6 suggests a significant role of ERK in reducing GR sensitivity to mechanical strain.  相似文献   

10.
11.
12.
Human relaxin-3 is a neuropeptide that is structurally similar to human insulin with two chains (A and B) connected by three disulfide bonds. It is expressed primarily in the brain and has modulatory roles in stress and anxiety, feeding and metabolism, and arousal and behavioural activation. Structure-activity relationship studies have shown that relaxin-3 interacts with its cognate receptor RXFP3 primarily through its B-chain and that its A-chain does not have any functional role. In this study, we have investigated the effect of modification of the B-chain C-terminus on the binding and activity of the peptide. We have chemically synthesised and characterized H3 relaxin as C-termini acid (both A and B chains having free C-termini; native form) and amide forms (both chains’ C-termini were amidated). We have confirmed that the acid form of the peptide is more potent than its amide form at both RXFP3 and RXFP4 receptors. We further investigated the effects of amidation at the C-terminus of individual chains. We report here for the first time that amidation at the C-terminus of the B-chain of H3 relaxin leads to significant drop in the binding and activity of the peptide at RXFP3/RXFP4 receptors. However, modification of the A-chain C-terminus does not have any effect on the activity. We have confirmed using circular dichroism spectroscopy that there is no secondary structural change between the acid and amide form of the peptide, and it is likely that it is the local C-terminal carboxyl group orientation that is crucial for interacting with the receptors.  相似文献   

13.
14.
Axonal regeneration is an essential condition to re-establish functional neuronal connections in the injured adult central nervous system (CNS), but efficient regrowth of severed axons has proven to be very difficult to achieve. Although significant progress has been made in identifying the intrinsic and extrinsic mechanisms involved, many aspects remain unresolved. Axonal development in embryonic CNS (hippocampus) requires the obligate activation of the insulin-like growth factor 1 receptor (IGF-1R). Based on known similarities between axonal growth in fetal compared to mature CNS, we decided to examine the expression of the IGF-1R, using an antibody to the βgc subunit or a polyclonal anti-peptide antibody directed to the IGF-R (C20), in an in vitro model of adult CNS axonal regeneration, namely retinal ganglion cells (RGC) derived from adult rat retinas. Expression of both βgc and the β subunit recognized by C20 antibody were low in freshly isolated adult RGC, but increased significantly after 4 days in vitro. As in embryonic axons, βgc was localised to distal regions and leading growth cones in RGC. IGF-1R-βgc co-localised with activated p85 involved in the phosphatidylinositol-3 kinase (PI3K) signaling pathway, upon stimulation with IGF-1. Blocking experiments using either an antibody which neutralises IGF-1R activation, shRNA designed against the IGF-1R sequence, or the PI3K pathway inhibitor LY294002, all significantly reduced axon regeneration from adult RGC in vitro (∼40% RGC possessed axons in controls vs 2–8% in the different blocking studies). Finally, co-transfection of RGC with shRNA to silence IGF-1R together with a vector containing a constitutively active form of downstream PI3K (p110), fully restored axonal outgrowth in vitro. Hence these data demonstrate that axonal regeneration in adult CNS neurons requires re-expression and activation of IGF-1R, and targeting this system may offer new therapeutic approaches to enhancing axonal regeneration following trauma.  相似文献   

15.
16.
17.
18.
RoxA is an extracellular c-type diheme cytochrome secreted by Xanthomonas sp. strain 35Y during growth on rubber. RoxA cleaves poly(cis-1,4-isoprene) to 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). Analysis of the RoxA structure revealed that Phe317 is located in close proximity (≈5 Å) to the N-terminal heme that presumably represents the active site. To find evidence of whether Phe317 is important for catalysis, we changed it to tyrosine, tryptophan, leucine, histidine, or alanine. All five RoxA muteins were expressed after integration of the respective gene into the chromosome of a Xanthomonas sp. ΔroxA strain. Residual clearing zone formation on opaque latex agar was found for Xanthomonas sp. strains expressing the Phe317Leu, Phe317Ala, or Phe317His variant (wild type > Leu > Ala > His). Strains in which Phe317 was changed to tyrosine or tryptophan were inactive. Phe317Ala and Phe312Leu RoxA muteins were purified, and polyisoprene cleavage activities were reduced to ≈3% and 10%, respectively. UV-visible spectroscopy of RoxA muteins confirmed that both heme groups were present in an oxidized form, but spectral responses to the addition of low-molecular-weight (inhibitory) ligand molecules such as imidazole and pyridine were different from those of wild-type RoxA. Our results show that residue 317 is involved in interaction with substrates. This is the first report on structure-function analysis of a polyisoprene-cleaving enzyme and on the identification of an amino acid that is essential for polyisoprene cleavage activity.  相似文献   

19.

Background

Mammalian ATAD3 is a mitochondrial protein, which is thought to play an important role in nucleoid organization. However, its exact function is still unresolved.

Results

Here, we characterize the Caenorhabditis elegans (C. elegans) ATAD3 homologue (ATAD-3) and investigate its importance for mitochondrial function and development. We show that ATAD-3 is highly conserved among different species and RNA mediated interference against atad-3 causes severe defects, characterized by early larval arrest, gonadal dysfunction and embryonic lethality. Investigation of mitochondrial physiology revealed a disturbance in organellar structure while biogenesis and function, as indicated by complex I and citrate synthase activities, appeared to be unaltered according to the developmental stage. Nevertheless, we observed very low complex I and citrate synthase activities in L1 larvae populations in comparison to higher larval and adult stages. Our findings indicate that atad-3(RNAi) animals arrest at developmental stages with low mitochondrial activity. In addition, a reduced intestinal fat storage and low lysosomal content after depletion of ATAD-3 suggests a central role of this protein for metabolic activity.

Conclusions

In summary, our data clearly indicate that ATAD-3 is essential for C. elegans development in vivo. Moreover, our results suggest that the protein is important for the upregulation of mitochondrial activity during the transition to higher larval stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号