首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Background

Sequence variation in the human 12/15 lipoxygenase (ALOX15) has been associated with atherosclerotic disease. We functionally characterized an ALOX15 promoter polymorphism, rs2255888, previously associated with carotid plaque burden.

Methodology/Principal Findings

We demonstrate specific in vitro and in vivo binding of the cytoskeletal protein, vimentin, to the ALOX15 promoter. We show that the two promoter haplotypes carrying alternate alleles at rs2255888 exhibit significant differences in promoter activity by luciferase reporter assay in two cell lines. Differences in in-vitro vimentin-binding to and formation of DNA secondary structures in the polymorphic promoter sequence are also detected by electrophoretic mobility shift assay and biophysical analysis, respectively. We show regulation of ALOX15 protein by vimentin.

Conclusions/Significance

This study suggests that vimentin binds the ALOX15 promoter and regulates its promoter activity and protein expression. Sequence variation that results in changes in DNA conformation and vimentin binding to the promoter may be relevant to ALOX15 gene regulation.  相似文献   

2.
3.
4.

Background

Alpha-synuclein (SNCA) gene expression is an important factor in the pathogenesis of Parkinson''s disease (PD). Gene multiplication can cause inherited PD, and promoter polymorphisms that increase SNCA expression are associated with sporadic PD. CpG methylation in the promoter region may also influence SNCA expression.

Methodology/Principal Findings

By using cultured cells, we identified a region of the SNCA CpG island in which the methylation status altered along with increased SNCA expression. Postmortem brain analysis revealed regional non-specific methylation differences in this CpG region in the anterior cingulate and putamen among controls and PD; however, in the substantia nigra of PD, methylation was significantly decreased.

Conclusions/Significance

This CpG region may function as an intronic regulatory element for SNCA gene. Our findings suggest that a novel epigenetic regulatory mechanism controlling SNCA expression influences PD pathogenesis.  相似文献   

5.
6.
7.
8.
9.

Background

We have previously shown that serum/glucocorticoid regulated kinase 1 (SGK1) is down-regulated in colorectal cancers (CRC) with respect to normal tissue. As hyper-methylation of promoter regions is a well-known mechanism of gene silencing in cancer, we tested whether the SGK1 promoter region was methylated in colonic tumour samples.

Methodology/Principal Findings

We investigated the methylation profile of the two CpG islands present in the promoter region of SGK1 in a panel of 5 colorectal cancer cell lines by sequencing clones of bisulphite-treated DNA samples. We further confirmed our findings in a panel of 10 normal and 10 tumour colonic tissue samples of human origin. We observed CpG methylation only in the smaller and more distal CpG island in the promoter region of SGK1 in both normal and tumour samples of colonic origin. We further identified a single nucleotide polymorphism (SNP, rs1743963) which affects methylation of the corresponding CpG.

Conclusions/Significance

Our results show that even though partial methylation of the promoter region of SGK1 is present, this does not account for the different expression levels seen between normal and tumour tissue.  相似文献   

10.
11.

Purpose

Although promoter hypermethylation has been an accepted means of tumor suppressor gene inactivation, activation of otherwise normally repressed proto-oncogenes by promoter demethylation has been infrequently documented.

Experimental Design

In this study we performed an integrative, whole-genome analysis for discovery of epigenetically activated proto-oncogenes in head and neck cancer tumors. We used the 47K GeneChip U133 Plus 2.0 Affymetrix expression microarray platform to obtain re-expression data from 5-aza treated normal cell line and expression data from primary head and neck squamous cell carcinoma (HNSCC) tumor tissues and normal mucosa tissues. We then investigated candidate genes by screening promoter regions for CpG islands and bisulfite sequencing followed by QUMSP and RT PCR for the best candidate genes. Finally, functional studies were performed on the top candidate gene.

Results

From the top 178 screened candidates 96 had CpG islands in their promoter region. Seven candidate genes showed promoter region methylation in normal mucosa samples and promoter demethylation in a small cohort of primary HNSCC tissues. We then studied the demethylation of the top 3 candidate genes in an expanded cohort of 76 HNSCC tissue samples and 17 normal mucosa samples. We identified MAGEB2 as having significant promoter demethylation in primary head and neck squamous cell carcinoma tissues. We then found significantly higher expression of MAGEB2 in tumors in a separate cohort of 73 primary HNSCC tissues and 31 normal tissues. Finally, we found that MAGEB2 has growth promoting effects on minimally transformed oral keratinocyte cell lines but not a definite effect on HNSCC cell lines.

Conclusion

In conclusion, we identified MAGEB2 as activated by promoter demethylation in HNSCCand demonstrates growth promoting effects in a minimally transformed oral keratinocyte cell line. More studies are needed to evaluate MAGBE2''s exact role in HNSCC.  相似文献   

12.
13.

Background

We previously reported that sevoflurane anesthesia reversibly suppresses the expression of the clock gene, Period2 (Per2), in the mouse suprachiasmatic nucleus (SCN). However, the molecular mechanisms underlying this suppression remain unclear. In this study, we examined the possibility that sevoflurane suppresses Per2 expression via epigenetic modification of the Per2 promoter.

Methods

Mice were anesthetized with a gas mixture of 2.5% sevoflurane/40% oxygen at a 6 L/min flow for 1 or 4 h. After termination, brains were removed and samples of SCN tissue were derived from frozen brain sections. Chromatin immunoprecipitation (ChIP) assays using anti-acetylated-histone antibodies were performed to investigate the effects of sevoflurane on histone acetylation of the Per2 promoter. Interaction between the E’-box (a cis-element in the Per2 promoter) and CLOCK (the Clock gene product) was also assessed by a ChIP assay using an anti-CLOCK antibody. The SCN concentration of nicotinamide adenine dinucleotide (NAD+), a CLOCK regulator, was assessed by liquid chromatography-mass spectrometry.

Results

Acetylation of histone H4 in the proximal region of the Per2 promoter was significantly reduced by sevoflurane. This change in the epigenetic profile of the Per2 gene was observed prior to suppression of Per2 expression. Simultaneously, a reduction in the CLOCK-E’-box interaction in the Per2 promoter was observed. Sevoflurane treatment did not affect the concentration of NAD+ in the SCN.

Conclusions

Independent of NAD+ concentration in the SCN, sevoflurane decreases CLOCK binding to the Per2 promoter E’-box motif, reducing histone acetylation and leading to suppression of Per2 expression.  相似文献   

14.

Background

Lipid accumulation is the primary evidence of non-alcoholic fatty liver disease (NAFLD). Ginkgo biloba extract (GBE) and its flavonoid ingredients (quercetin, kaempferol, and isorhamnetin) could lessen the lipid accumulation associated with up-regulation of the rate-limiting enzyme, carnitine palmitoyltransferase 1A (CPT1A), in the β-oxidation of long-chain fatty acids. In this study, we investigated the mechanisms by which GBE and its flavonoids induced expression of CPT1A.

Results

CPT1A inhibition with RNAi resulted in triglyceride accumulation in HepG2 cells. Through deletion and mutation analysis of CPT1A’s promoter combined with electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments, the CPT1A promoter region (−50 to −5 nt) was determined to contain two putative Sp1 binding sites, namely Sp1a and Sp1b, which might act as the GBE regulation response DNA element. Sp1 might be induced to transfer from cytoplasma to nucleus to bind the promoter region of −50 to −5 nt by GBE. The regulatory effects of GBE on CPT1A were also verified on the flavonoid ingredients quercetin, kaempferol, and isorhamnetin.

Conclusion

Sp1 was crucial in regulating CPT1A expression with GBE and its flavonoid ingredients, and the −50 to −5 nt region of CPT1A promoter played important roles in Sp1 binding.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0087-x) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号