首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
《朊病毒》2013,7(5):498-509
The cellular prion protein (PrPC) is attached to the cell membrane via its glycosylphosphatidylinositol (GPI)-anchor and is constitutively shed into the extracellular space. Here, three different mechanisms are presented that concurrently shed PrPC from the cell. The fast α-cleavage released a N-terminal fragment (N1) into the medium and the extreme C-terminal cleavage shed soluble full-length (FL-S) PrP and C-terminally cleaved (C1-S) fragments outside the cell. Also, a slow exosomal release of full-length (FL) and C1-fragment (C1) was demonstrated. The three separate mechanisms acting simultaneously, but with different kinetics, have to be taken into consideration when elucidating functional roles of PrPC and also when processing of PrPC is considered as a target for intervention in prion diseases. Further, in this study it was shown that metalloprotease inhibitors affected the extreme C-terminal cleavage and shedding of PrPC. The metalloprotease inhibitors did not influence the α-cleavage or the exosomal release. Taken together, these results are important for understanding the different mechanisms acting in parallel in the shedding and cleavage of PrPC.  相似文献   

2.
The cellular form of the prion protein, PrPC, undergoes extensive proteolysis at the α site (109K↓H110). Expression of non-cleavable PrPC mutants in transgenic mice correlates with neurotoxicity, suggesting that α-cleavage is important for PrPC physiology. To gain insights into the mechanisms of α-cleavage, we generated a library of PrPC mutants with mutations in the region neighbouring the α-cleavage site. The prevalence of C1, the carboxy adduct of α-cleavage, was determined for each mutant. In cell lines of disparate origin, C1 prevalence was unaffected by variations in charge and hydrophobicity of the region neighbouring the α-cleavage site, and by substitutions of the residues in the palindrome that flanks this site. Instead, α-cleavage was size-dependently impaired by deletions within the domain 106–119. Almost no cleavage was observed upon full deletion of this domain. These results suggest that α-cleavage is executed by an α-PrPase whose activity, despite surprisingly limited sequence specificity, is dependent on the size of the central region of PrPC.  相似文献   

3.
The cellular prion protein (PrPC) is subjected to various processing under physiological and pathological conditions, of which the α-cleavage within the central hydrophobic domain not only disrupts a region critical for both PrP toxicity and PrPC to PrPSc conversion but also produces the N1 fragment that is neuroprotective and the C1 fragment that enhances the pro-apoptotic effect of staurosporine in one report and inhibits prion in another. The proteases responsible for the α-cleavage of PrPC are controversial. The effect of ADAM10, ADAM17, and ADAM9 on N1 secretion clearly indicates their involvement in the α-cleavage of PrPC, but there has been no report of direct PrPC α-cleavage activity with any of the three ADAMs in a purified protein form. We demonstrated that, in muscle cells, ADAM8 is the primary protease for the α-cleavage of PrPC, but another unidentified protease(s) must also play a minor role. We also found that PrPC regulates ADAM8 expression, suggesting that a close examination on the relationships between PrPC and its processing enzymes may reveal novel roles and underlying mechanisms for PrPC in non-prion diseases such as asthma and cancer.  相似文献   

4.
PrP overdrive     
Knockout of the cellular prion protein (PrPC) in mice is tolerated, as is complete elimination of the protein’s N-terminal domain. However, deletion of select short segments between the N- and C-terminal domains is lethal. How can one reconcile this apparent paradox? Research over the last few years demonstrates that PrPC undergoes α-cleavage in the vicinity of residue 109 (mouse sequence) to release the bioactive N1 and C1 fragments. In biophysical studies, we recently characterized the action of relevant members of the ADAM (A Disintegrin And Metalloproteinase) enzyme family (ADAM8, 10, and 17) and found that they all produce α-cleavage, but at 3 distinct cleavage sites, with proteolytic efficiency modulated by the physiologic metals copper and zinc. Remarkably, the shortest lethal deletion segment in PrPC fully encompasses the three α-cleavage sites. Analysis of all reported PrPC deletion mutants suggests that elimination of α-cleavage, coupled with retention of the protein’s N-terminal residues, segments 23–31 and longer, confers the lethal phenotype. Interestingly, these N-terminal residues are implicated in the activation of several membrane proteins, including synaptic glutamate receptors. We propose that α-cleavage is a general mechanism essential for downregulating PrPC’s intrinsic activity, and that blockage of proteolysis leads to constitutively active PrPC and consequent dyshomeostasis.  相似文献   

5.
The cellular form of the prion protein (PrPC) is found in both full-length and several different cleaved forms in vivo. Although the precise functions of the PrPC proteolytic products are not known, cleavage between the unstructured N-terminal domain and the structured C-terminal domain at Lys-109↓His-110 (mouse sequence), termed α-cleavage, has been shown to produce the anti-apoptotic N1 and the scrapie-resistant C1 peptide fragments. β-Cleavage, residing adjacent to the octarepeat domain and N-terminal to the α-cleavage site, is thought to arise from the action of reactive oxygen species produced from redox cycling of coordinated copper. We sought to elucidate the role of key members of the ADAM (a disintegrin and metalloproteinase) enzyme family, as well as Cu2+ redox cycling, in recombinant mouse PrP (MoPrP) cleavage through LC/MS analysis. Our findings show that although Cu2+ redox-generated reactive oxygen species do produce fragmentation corresponding to β-cleavage, ADAM8 also cleaves MoPrP in the octarepeat domain in a Cu2+- and Zn2+-dependent manner. Additional cleavage by ADAM8 was observed at the previously proposed location of α-cleavage, Lys-109↓His-110 (MoPrP sequencing); however, upon addition of Cu2+, the location of α-cleavage shifted by several amino acids toward the C terminus. ADAM10 and ADAM17 have also been implicated in α-cleavage at Lys-109↓His-110; however, we observed that they instead cleaved MoPrP at a novel location, Ala-119↓Val-120, with additional cleavage by ADAM10 at Gly-227↓Arg-228 near the C terminus. Together, our results show that MoPrP cleavage is far more complex than previously thought and suggest a mechanism by which PrPC fragmentation responds to Cu2+ and Zn2+.  相似文献   

6.
Expression of the cellular prion protein (PrPC) is crucial for the development of prion diseases. Resistance to prion diseases can result from reduced availability of the prion protein or from amino acid changes in the prion protein sequence. We propose here that increased production of a natural PrP α-cleavage fragment, C1, is also associated with resistance to disease. We show, in brain tissue, that ARR homozygous sheep, associated with resistance to disease, produced PrPC comprised of 25% more C1 fragment than PrPC from the disease-susceptible ARQ homozygous and highly susceptible VRQ homozygous animals. Only the C1 fragment derived from the ARR allele inhibits in-vitro fibrillisation of other allelic PrPC variants. We propose that the increased α-cleavage of ovine ARR PrPC contributes to a dominant negative effect of this polymorphism on disease susceptibility. Furthermore, the significant reduction in PrPC β-cleavage product C2 in sheep of the ARR/ARR genotype compared to ARQ/ARQ and VRQ/VRQ genotypes, may add to the complexity of genetic determinants of prion disease susceptibility.  相似文献   

7.
Prion and Alzheimer diseases are fatal neurodegenerative diseases caused by misfolding and aggregation of the cellular prion protein (PrPC) and the β-amyloid peptide, respectively. Soluble oligomeric species rather than large aggregates are now believed to be neurotoxic. PrPC undergoes three proteolytic cleavages as part of its natural life cycle, α-cleavage, β-cleavage, and ectodomain shedding. Recent evidences demonstrate that the resulting secreted PrPC molecules might represent natural inhibitors against soluble toxic species. In this mini-review, we summarize recent observations suggesting the potential benefit of using PrPC-derived molecules as therapeutic agents in prion and Alzheimer diseases.  相似文献   

8.
《朊病毒》2013,7(5):453-460
The cellular prion protein (PrPC) is subjected to various processing under physiological and pathological conditions, of which the α-cleavage within the central hydrophobic domain not only disrupts a region critical for both PrP toxicity and PrPC to PrPSc conversion but also produces the N1 fragment that is neuroprotective and the C1 fragment that enhances the pro-apoptotic effect of staurosporine in one report and inhibits prion in another. The proteases responsible for the α-cleavage of PrPC are controversial. The effect of ADAM10, ADAM17, and ADAM9 on N1 secretion clearly indicates their involvement in the α-cleavage of PrPC, but there has been no report of direct PrPC α-cleavage activity with any of the three ADAMs in a purified protein form. We demonstrated that, in muscle cells, ADAM8 is the primary protease for the α-cleavage of PrPC, but another unidentified protease(s) must also play a minor role. We also found that PrPC regulates ADAM8 expression, suggesting that a close examination on the relationships between PrPC and its processing enzymes may reveal novel roles and underlying mechanisms for PrPC in non-prion diseases such as asthma and cancer.  相似文献   

9.
The cellular prion protein (PrPC) is a GPI-anchored cell-surface protein. A small subset of PrPC molecules, however, can be integrated into the ER-membrane via a transmembrane domain (TM), which also harbors the most highly conserved regions of PrPC, termed the hydrophobic core (HC). A mutation in HC is associated with prion disease resulting in an enhanced formation of a transmembrane form (CtmPrP), which has thus been postulated to be a neurotoxic molecule besides PrPSc. To elucidate a possible physiological function of the transmembrane domain, we created a set of mutants carrying microdeletions of 2-8 aminoacids within HC between position 114 and 121. Here, we show that these mutations display reduced propensity for transmembrane topology. In addition, the mutants exhibited alterations in the formation of the C1 proteolytic fragment, which is generated by α-cleavage during normal PrPC metabolism, indicating that HC might function as recognition site for the protease(s) responsible for PrPC α-cleavage. Interestingly, the mutant G113V, corresponding to a hereditary form of prion disease in humans, displayed increased CtmPrP topology and decreased α-cleavage in our in vitro assay. In conclusion, HC represents an essential determinant for transmembrane PrP topology, whereas the high evolutionary conservation of this region is rather based upon preservation of PrPC α-cleavage, thus highlighting the biological importance of this cleavage.  相似文献   

10.
The cellular prion protein (PrPC) is essential for the pathogenesis and transmission of prion diseases. PrPC is bound to the plasma membrane via a glycosylphosphatidylinositol anchor, although a secreted, soluble form has also been identified. Previously we reported that PrPC is subject to ectodomain shedding from the membrane by zinc metalloproteinases with a similar inhibition profile to those involved in shedding the amyloid precursor protein. Here we have used gain-of-function (overexpression) and loss-of-function (small interfering RNA knockdown) experiments in cells to identify the ADAMs (a disintegrin and metalloproteinases) involved in the ectodomain shedding of PrPC. These experiments revealed that ADAM9 and ADAM10, but not ADAM17, are involved in the shedding of PrPC and that ADAM9 exerts its effect on PrPC shedding via ADAM10. Using dominant negative, catalytically inactive mutants, we show that the catalytic activity of ADAM9 is required for its effect on ADAM10. Mass spectrometric analysis revealed that ADAM10, but not ADAM9, cleaved PrP between Gly228 and Arg229, three residues away from the site of glycosylphosphatidylinositol anchor attachment. The shedding of another membrane protein, the amyloid precursor protein β-secretase BACE1, by ADAM9 is also mediated via ADAM10. Furthermore, we show that pharmacological inhibition of PrPC shedding or activation of both PrPC and PrPSc shedding by ADAM10 overexpression in scrapie-infected neuroblastoma N2a cells does not alter the formation of proteinase K-resistant PrPSc. Collectively, these data indicate that although PrPC can be shed through the action of ADAM family members, modulation of PrPC or PrPSc ectodomain shedding does not regulate prion conversion.The prion protein (PrP)3 is the causative agent of the transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, bovine spongiform encephalopathy in cattle, and chronic wasting disease in deer and elk (1). In these diseases the cellular form of PrP (PrPC) undergoes a conformational conversion to the infectious form PrPSc that is characterized biochemically by its resistance to digestion with proteinase K (PK) (2). Mature PrPC is anchored to the extracellular surface of the cell membrane through a glycosylphosphatidylinositol (GPI) anchor and, like most GPI-anchored proteins, is clustered into cholesterol-rich, detergent-resistant membrane rafts (reviewed in Ref. 3). Although the precise subcellular site of conversion remains undefined, conformational conversion of PrPC to PrPSc is believed to occur either at the cell surface or within the endocytic pathway (46).A number of studies indicate that modulation of PrPC levels at the cell surface may represent a possible future disease intervention strategy. For example, the retention of PrPC at the cell surface and concomitant prevention of its endocytosis through the use of PrP antibodies inhibited PrPSc formation (7). Furthermore, the sterol-binding polyene antibiotic filipin reduced endocytosis, and induced cellular release, of PrPC with a concomitant reduction in PrPSc accumulation (8). More recently, it has been shown that modulation of cell surface PrPC levels by the novel sorting nexin SNX33 can interfere with PrPSc formation in cultured cells (9). Nonetheless, the natural processes regulating PrPC levels at the cell surface remain poorly defined. One such mechanism of regulation is via shedding of the bulk of the ectodomain of PrPC either through cleavage of the polypeptide close to the GPI anchor or within the GPI anchor itself. Indeed, it has long been established that PrPC can be shed into the medium of cultured cells and is present as a soluble form in vivo in human cerebrospinal fluid (10, 11).Numerous cell surface proteins can be proteolytically shed by the action of a group of zinc metalloproteinases known collectively as secretases or sheddases (reviewed in Refs. 12, 13). Whereas most proteolytically shed proteins are derived from transmembrane polypeptide-anchored substrates, several GPI-anchored proteins, including the folate receptor (14), the ecto-ADP-ribosyltransferase ART2.2 (15), and a GPI-anchored construct of angiotensin-converting enzyme (16) are shed by the action of metalloproteinases. We have previously shown that PrPC can also be proteolytically shed from the cell surface through the action of one or more zinc metalloproteinases with similar properties to those of the α-secretases responsible for the shedding of the amyloid precursor protein (APP) of Alzheimer disease (17). This α-secretase-mediated ectodomain shedding of APP from the cell surface is carried out by at least three members of the a disintegrin and metalloproteinase (ADAM) family, namely ADAM9, -10, and -17 (reviewed in Ref. 18). In addition to cleavage by ADAMs, APP is also cleaved by the β-secretase, BACE1 (β-site APP-cleaving enzyme) and the γ-secretase complex to release the neurotoxic amyloid-β peptide (19). BACE1 itself is also subject to ectodomain shedding by as yet unidentified members of the ADAM family (20).The similarities between the ectodomain shedding of APP and PrPC, in particular the similar profile of inhibition by a range of hydroxamate-based zinc metalloproteinase inhibitors (17), led us to investigate whether the same members of the ADAM family were also involved in the shedding of PrPC. It should be noted that this ectodomain shedding of PrPC by cleavage of the polypeptide chain near to the site (Ser231) of GPI anchor addition in the C terminus of the protein is distinct from the so-called α-cleavage between residues 111 and 112 in the middle of the protein (21, 22). This latter “endoproteolytic” cleavage of PrPC is reported to be carried out by members of the ADAM family (23, 24).To investigate the role of ADAMs in the ectodomain shedding of PrPC, we used loss-of-function and gain-of-function experiments in cultured cells in which candidate PrP sheddases were either knocked down by siRNA or overexpressed. We have also further characterized the shedding of BACE1 by comparison to the shedding of APP and PrPC. In addition, we have explored whether proteolytic shedding of PrPC is of importance in regulating its conversion into PrPSc.  相似文献   

11.
Prion disease research has opened up the “black-box” of neurodegeneration, defining a key role for protein misfolding wherein a predominantly alpha-helical precursor protein, PrPC, is converted to a disease-associated, β-sheet enriched isoform called PrPSc. In Alzheimer disease (AD) the Aβ peptide derived from the β-amyloid precuror protein APP folds in β-sheet amyloid. Early thoughts along the lines of overlap may have been on target,1 but were eclipsed by a simultaneous (but now anachronistic) controversy over the role of PrPSc in prion diseases.2,3 Nonetheless, as prion diseases such as Creutzfeldt-Jakob Disease (CJD) are themselves rare and can include an overt infectious mode of transmission, and as familial prion diseases and familial AD involve different genes, an observer might reasonably have concluded that prion research could occasionally catalyze ideas in AD, but could never provide concrete overlaps at the mechanistic level. Surprisingly, albeit a decade or three down the road, several prion/AD commonalities can be found within the contemporary literature. One important prion/AD overlap concerns seeded spread of Aβ aggregates by intracerebral inoculation much like prions,4 and, with a neuron-to-neuron ‘spreading’ also reported for pathologic forms of other misfolded proteins, Tau5,6 and α-synuclein in the case of Parkinson Disease.7,8 The concept of seeded spread has been discussed extensively elsewhere, sometimes under the rubric of “prionoids”9, and lies outside the scope of this particular review where we will focus upon PrPC. From this point the story can now be subdivided into four strands of investigation: (1) pathologic effects of Aβ can be mediated by binding to PrPC,10 (2) the positioning of endoproteolytic processing events of APP by pathologic (β-cleavage + γ-cleavage) and non-pathologic (α-cleavage + γ-cleavage) secretase pathways is paralleled by seemingly analogous α- and β-like cleavage of PrPC (Fig. 1) (3) similar lipid raft environments for PrPC and APP processing machinery,11-13 and perhaps in consequence, overlaps in repertoire of the PrPC and APP protein interactors (“interactomes”),14,15 and (4) rare kindreds with mixed AD and prion pathologies.16 Here we discuss confounds, consensus and conflict associated with parameters that apply to these experimental settings.  相似文献   

12.
Aberrant self-assembly, induced by structural misfolding of the prion proteins, leads to a number of neurodegenerative disorders. In particular, misfolding of the mostly α-helical cellular prion protein (PrPC) into a β-sheet-rich disease-causing isoform (PrPSc) is the key molecular event in the formation of PrPSc aggregates. The molecular mechanisms underlying the PrPC-to-PrPSc conversion and subsequent aggregation remain to be elucidated. However, in persistently prion-infected cell-culture models, it was shown that treatment with monoclonal antibodies against defined regions of the prion protein (PrP) led to the clearing of PrPSc in cultured cells. To gain more insight into this process, we characterized PrP-antibody complexes in solution using a fast protein liquid chromatography coupled with small-angle x-ray scattering (FPLC-SAXS) procedure. High-quality SAXS data were collected for full-length recombinant mouse PrP [denoted recPrP(23–230)] and N-terminally truncated recPrP(89–230), as well as their complexes with each of two Fab fragments (HuM-P and HuM-R1), which recognize N- and C-terminal epitopes of PrP, respectively. In-line measurements by fast protein liquid chromatography coupled with SAXS minimized data artifacts caused by a non-monodispersed sample, allowing structural analysis of PrP alone and in complex with Fab antibodies. The resulting structural models suggest two mechanisms for how these Fabs may prevent the conversion of PrPC into PrPSc.  相似文献   

13.
Prion diseases are infectious and fatal neurodegenerative diseases affecting humans and animals. Transmission is possible within and between species with zoonotic potential. Currently, no prophylaxis or treatment exists. Prions are composed of the misfolded isoform PrPSc of the cellular prion protein PrPC. Expression of PrPC is a prerequisite for prion infection, and conformational conversion of PrPC is induced upon its direct interaction with PrPSc. Inhibition of this interaction can abrogate prion propagation, and we have previously established peptide aptamers (PAs) binding to PrPC as new anti-prion compounds. Here, we mapped the interaction site of PA8 in PrP and modeled the complex in silico to design targeted mutations in PA8 which presumably enhance binding properties. Using these PA8 variants, we could improve PA-mediated inhibition of PrPSc replication and de novo infection of neuronal cells. Furthermore, we demonstrate that binding of PA8 and its variants increases PrPC α-cleavage and interferes with its internalization. This gives rise to high levels of the membrane-anchored PrP-C1 fragment, a transdominant negative inhibitor of prion replication. PA8 and its variants interact with PrPC at its central and most highly conserved domain, a region which is crucial for prion conversion and facilitates toxic signaling of Aβ oligomers characteristic for Alzheimer’s disease. Our strategy allows for the first time to induce α-cleavage, which occurs within this central domain, independent of targeting the responsible protease. Therefore, interaction of PAs with PrPC and enhancement of α-cleavage represent mechanisms that can be beneficial for the treatment of prion and other neurodegenerative diseases.  相似文献   

14.
《朊病毒》2013,7(4):359-363
Prion disease research has opened up the “black-box” of neurodegeneration, defining a key role for protein misfolding wherein a predominantly alpha-helical precursor protein, PrPC, is converted to a disease-associated, β-sheet enriched isoform called PrPSc. In Alzheimer disease (AD) the Aβ peptide derived from the β-amyloid precuror protein APP folds in β-sheet amyloid. Early thoughts along the lines of overlap may have been on target,1 but were eclipsed by a simultaneous (but now anachronistic) controversy over the role of PrPSc in prion diseases.2,3 Nonetheless, as prion diseases such as Creutzfeldt-Jakob Disease (CJD) are themselves rare and can include an overt infectious mode of transmission, and as familial prion diseases and familial AD involve different genes, an observer might reasonably have concluded that prion research could occasionally catalyze ideas in AD, but could never provide concrete overlaps at the mechanistic level. Surprisingly, albeit a decade or three down the road, several prion/AD commonalities can be found within the contemporary literature. One important prion/AD overlap concerns seeded spread of Aβ aggregates by intracerebral inoculation much like prions,4 and, with a neuron-to-neuron ‘spreading’ also reported for pathologic forms of other misfolded proteins, Tau5,6 and α-synuclein in the case of Parkinson Disease.7,8 The concept of seeded spread has been discussed extensively elsewhere, sometimes under the rubric of “prionoids”9, and lies outside the scope of this particular review where we will focus upon PrPC. From this point the story can now be subdivided into four strands of investigation: (1) pathologic effects of Aβ can be mediated by binding to PrPC,10 (2) the positioning of endoproteolytic processing events of APP by pathologic (β-cleavage + γ-cleavage) and non-pathologic (α-cleavage + γ-cleavage) secretase pathways is paralleled by seemingly analogous α- and β-like cleavage of PrPC (Fig. 1) (3) similar lipid raft environments for PrPC and APP processing machinery,11-13 and perhaps in consequence, overlaps in repertoire of the PrPC and APP protein interactors (“interactomes”),14,15 and (4) rare kindreds with mixed AD and prion pathologies.16 Here we discuss confounds, consensus and conflict associated with parameters that apply to these experimental settings.  相似文献   

15.
In prion diseases, synapse dysfunction, axon retraction and loss of neuronal polarity precede neuronal death. The mechanisms driving such polarization defects, however, remain unclear. Here, we examined the contribution of RhoA-associated coiled-coil containing kinases (ROCK), key players in neuritogenesis, to prion diseases. We found that overactivation of ROCK signaling occurred in neuronal stem cells infected by pathogenic prions (PrPSc) and impaired the sprouting of neurites. In reconstructed networks of mature neurons, PrPSc-induced ROCK overactivation provoked synapse disconnection and dendrite/axon degeneration. This overactivation of ROCK also disturbed overall neurotransmitter-associated functions. Importantly, we demonstrated that beyond its impact on neuronal polarity ROCK overactivity favored the production of PrPSc through a ROCK-dependent control of 3-phosphoinositide-dependent kinase 1 (PDK1) activity. In non-infectious conditions, ROCK and PDK1 associated within a complex and ROCK phosphorylated PDK1, conferring basal activity to PDK1. In prion-infected neurons, exacerbated ROCK activity increased the pool of PDK1 molecules physically interacting with and phosphorylated by ROCK. ROCK-induced PDK1 overstimulation then canceled the neuroprotective α-cleavage of normal cellular prion protein PrPC by TACE α-secretase, which physiologically precludes PrPSc production. In prion-infected cells, inhibition of ROCK rescued neurite sprouting, preserved neuronal architecture, restored neuronal functions and reduced the amount of PrPSc. In mice challenged with prions, inhibition of ROCK also lowered brain PrPSc accumulation, reduced motor impairment and extended survival. We conclude that ROCK overactivation exerts a double detrimental effect in prion diseases by altering neuronal polarity and triggering PrPSc accumulation. Eventually ROCK emerges as therapeutic target to combat prion diseases.  相似文献   

16.
In prion diseases, the cellular form of the prion protein, PrPC, undergoes a conformational conversion to the infectious isoform, PrPSc. PrPC associates with lipid rafts through its glycosyl-phosphatidylinositol (GPI) anchor and a region in its N-terminal domain which also binds to heparan sulfate proteoglycans (HSPGs). We show that heparin displaces PrPC from rafts and promotes its endocytosis, suggesting that heparin competes with an endogenous raft-resident HSPG for binding to PrPC. We then utilised a transmembrane-anchored form of PrP (PrP-TM), which is targeted to rafts solely by its N-terminal domain, to show that both heparin and phosphatidylinositol-specific phospholipase C can inhibit its association with detergent-resistant rafts, implying that a GPI-anchored HSPG targets PrPC to rafts. Depletion of the major neuronal GPI-anchored HSPG, glypican-1, significantly reduced the raft association of PrP-TM and displaced PrPC from rafts, promoting its endocytosis. Glypican-1 and PrPC colocalised on the cell surface and both PrPC and PrPSc co-immunoprecipitated with glypican-1. Critically, treatment of scrapie-infected N2a cells with glypican-1 siRNA significantly reduced PrPSc formation. In contrast, depletion of glypican-1 did not alter the inhibitory effect of PrPC on the β-secretase cleavage of the Alzheimer''s amyloid precursor protein. These data indicate that glypican-1 is a novel cellular cofactor for prion conversion and we propose that it acts as a scaffold facilitating the interaction of PrPC and PrPSc in lipid rafts.  相似文献   

17.
The prion protein (PrPC) is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC between rafts and non-raft membranes. We investigated PrPC/ganglioside relationships and their influence on PrPC localization in a neuronal cellular model, cerebellar granule cells. Our findings argue that in these cells at least two PrPC conformations coexist: in lipid rafts PrPC is present in the native folding (α-helical), stabilized by chemico-physical condition, while it is mainly present in other membrane compartments in a PrPSc-like conformation. We verified, by means of antibody reactivity and circular dichroism spectroscopy, that changes in lipid raft-ganglioside content alters PrPC conformation and interaction with lipid bilayers, without modifying PrPC distribution or cleavage. Our data provide new insights into the cellular mechanism of prion conversion and suggest that GM1-prion protein interaction at the cell surface could play a significant role in the mechanism predisposing to pathology.  相似文献   

18.
Alzheimer disease (AD) is characterized by the amyloidogenic processing of the amyloid precursor protein (APP), culminating in the accumulation of amyloid-β peptides in the brain. The enzymatic action of the β-secretase, BACE1 is the rate-limiting step in this amyloidogenic processing of APP. BACE1 cleavage of wild-type APP (APPWT) is inhibited by the cellular prion protein (PrPC). Our recent study has revealed the molecular and cellular mechanisms behind this observation by showing that PrPC directly interacts with the pro-domain of BACE1 in the trans-Golgi network (TGN), decreasing the amount of BACE1 at the cell surface and in endosomes where it cleaves APPWT, while increasing BACE1 in the TGN where it preferentially cleaves APP with the Swedish mutation (APPSwe). PrPC deletion in transgenic mice expressing the Swedish and Indiana familial mutations (APPSwe,Ind) failed to affect amyloid-β accumulation, which is explained by the differential subcellular sites of action of BACE1 toward APPWT and APPSwe. This, together with our observation that PrPC is reduced in sporadic but not familial AD brain, suggests that PrPC plays a key protective role against sporadic AD. It also highlights the need for an APPWT transgenic mouse model to understand the molecular and cellular mechanisms underlying sporadic AD.  相似文献   

19.
Alzheimer and prion diseases are neurodegenerative disorders characterised by the abnormal processing of amyloid-β (Aβ) peptide and prion protein (PrPC), respectively. Recent evidence indicates that PrPC may play a critical role in the pathogenesis of Alzheimer disease. PrPC interacts with and inhibits the β-secretase BACE1, the rate-limiting enzyme in the production of Aβ. More recently PrPC was identified as a receptor for Aβ oligomers and the expression of PrPC appears to be controlled by the amyloid intracellular domain (AICD). Here we review these observations and propose a feedback loop in the normal brain where PrPC exerts an inhibitory effect on BACE1 to decrease both Aβ and AICD production. In turn, the AICD upregulates PrPC expression, thus maintaining the inhibitory effect of PrPC on BACE1. In Alzheimer disease, this feedback loop is disrupted, and the increased level of Aβ oligomers bind to PrPC and prevent it from regulating BACE1 activity.Key words: alzheimer disease, amyloid-β, Aβ oligomers, amyloid intracellular domain, BACE1, presenilin, prion protein  相似文献   

20.
Prions, the agents of transmissible spongiform encephalopathies, require the expression of prion protein (PrPC) to propagate disease. PrPC is converted into an abnormal insoluble form, PrPSc, that gains neurotoxic activity. Conversely, clinical manifestations of prion disease may occur either before or in the absence of PrPSc deposits, but the loss of normal PrPC function contribution for the etiology of these diseases is still debatable. Prion disease-associated mutations in PrPC represent one of the best models to understand the impact of PrPC loss-of-function. PrPC associates with various molecules and, in particular, the interaction of PrPC with laminin (Ln) modulates neuronal plasticity and memory formation. To assess the functional alterations associated with PrPC mutations, wild-type and mutated PrPC proteins were expressed in a neural cell line derived from a PrPC-null mouse. Treatment with the laminin γ1 chain peptide (Ln γ1), which mimics the Ln binding site for PrPC, increased intracellular calcium in cells expressing wild-type PrPC, whereas a significantly lower response was observed in cells expressing mutated PrPC molecules. The Ln γ1 did not promote process outgrowth or protect against staurosporine-induced cell death in cells expressing mutated PrPC molecules in contrast to cells expressing wild-type PrPC. The co-expression of wild-type PrPC with mutated PrPC molecules was able to rescue the Ln protective effects, indicating the lack of negative dominance of PrPC mutated molecules. These results indicate that PrPC mutations impair process outgrowth and survival mediated by Ln γ1 peptide in neural cells, which may contribute to the pathogenesis of genetic prion diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号