首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
运用中药龙葵提取物澳洲茄边碱处理人肺腺癌A549细胞,研究其对A549细胞的抑制及凋亡作用,探讨澳洲茄边碱对肺腺癌的作用机制。通过细胞增殖抑制实验检测不同浓度澳洲茄边碱对A549细胞增殖的影响,采用蛋白印迹法(Western blot)检测凋亡蛋白Caspase3的表达水平,采用流式细胞术测定处理后A549细胞的凋亡水平及细胞周期变化。结果显示,不同浓度澳洲茄边碱均能抑制A549的增殖,呈浓度效应;用不同浓度澳洲茄边碱处理A549细胞24h后,Western blot结果显示,随药物浓度增大,凋亡蛋白Caspase3水解程度增高,对A549凋亡作用明显增强;流式细胞术检测细胞凋亡的结果显示,20μmol·L-1澳洲茄边碱处理A549细胞后,细胞发生明显凋亡,其中早期凋亡细胞比例为25.35%,晚期凋亡细胞比例为11.47%;流式细胞术检测细胞周期的结果显示,20μmol·L-1澳洲茄边碱处理A549细胞后,细胞周期阻滞于G2/M期。本研究结果表明,澳洲茄边碱通过激活细胞凋亡通路中的Caspase3蛋白触发细胞凋亡,同时将A549细胞阻滞在细胞周期的G2/M期,抑制人肺腺癌细胞A549的生长。  相似文献   

2.
为观察甘草酸在小鼠巨噬细胞系RAW264.7抗绵羊肺炎支原体(Mycoplasma ovipneumoniae,MO)感染中的作用,实验利用CCK-8细胞活性检测找到最佳甘草酸处理浓度;检测甘草酸对受MO感染的巨噬细胞活性的影响。流式细胞仪检测甘草酸对RAW264.7巨噬细胞生长周期的影响;ELISA检测甘草酸对受MO感染的巨噬细胞分泌TNF-α的影响;Western blot检测细胞凋亡因子Bax、Bad的表达情况。RT-PCR检测凋亡和自噬相关基因的表达情况。结果显示,浓度为12μmol/L的甘草酸显著升高RAW264.7的活性(P=0.012 9),且处于G1期的细胞数减少,G2期的细胞数增加。甘草酸(12μmol/L)可提高受MO感染的RAW264.7的增殖率(P=0.034 0),培养上清中TNF-α含量升高(P=0.015 2),巨噬细胞中促凋亡蛋白Bax表达量增加,但基因caspase 3和caspase 9的表达量显著下调(P<0.000 1),自噬相关基因Atg 7和Beclin 1表达量显著升高(P<0.000 1)。结果提示在MO感染巨噬细胞引起免疫抑制的情况下,甘草酸可通过促增殖、抑凋亡、促进TNF-α的表达、增加自噬来起到免疫调控作用。  相似文献   

3.
Arterial remodeling in response to pathological insult is a complex process that depends in part on the balance between vascular cell apoptosis and proliferation. Studies in experimental models suggest that HO-1 mediates neointimal formation while limiting lumen stenosing, indicating a differential effect on vascular endothelial (EC) and smooth muscle cells (SMC). We investigated the effect of HO-1 expression on cell cycle progression in EC and SMC. The addition of SnMP (10 microM), an inhibitor of HO activity, to EC or SMC for 24h, resulted in significant abnormalities in DNA distribution and cell cycle progression compared to cells treated with the HO-1 inducers, heme (10 microM) or SnCl(2) (10 microM). SnMP increased G(1) phase and decreased S and G(2)/M phases in EC while heme or SnCl(2) decreased G(1) phase, but increased S and G(2)/M phases (p<0.05). Opposite effects were obtained in SMC. SnMP decreased G(1) phase and increased S and G(2)/M phases while heme or SnCl(2) increased G(1) phase but decreased S and G(2)/M phases (p<0.05). Our data demonstrate that HO-1 regulates the cell cycle in a cell-specific manner; it increases EC but decreases SMC cycle progression. The mechanisms underlying the HO-1 cell-specific effect on cell cycle progression within the vascular wall are yet to be explored. Nevertheless, these findings suggest that cell-specific targeting of HO-1 expression may provide a novel therapeutic strategy for the treatment of cardiovascular diseases.  相似文献   

4.
The main aim of the present work was to investigate the potential effect of acetone extract of Ficus religosa leaf (FAE) in multiple apoptosis signalling in human breast cancer cells. FAE treatment significantly induced dose and time dependent, irreversible inhibition of breast cancer cell growth with moderate toxicity to normal breast epithelial cells. This observation was validated using Sulforhodamine B assay. Cell cycle analysis by Flow cytometry showed cell cycle arrest in G1 phase and induction of sub-G0 peak. FAE induced chromatin condensation and displayed an increase in apoptotic population in Annexin V-FITC/PI (Fluorescein isothiocyanate/Propidium iodide) double staining. FAE stimulated the loss of mitochondrial membrane potential in multiple breast cancer cell lines when compared to normal diploid cells. To understand the role of Bax in FAE induced apoptosis, we employed a sensitive cell based platform of MCF-7 cells expressing Bax-EGFP. Bax translocation to mitochondria was accompanied by the disruption of mitochondrial membrane potential and marked elevation in LEHDase activity (Caspase 9). Consistent with this data, FAE induced Caspase activation as evidenced by ratio change in FRET Caspase sensor expressing MCF-7 cell line and cleavage of prominent Caspases and PARP. Interestingly, FAE accelerated cell death in a mitochondrial dependent manner in continuous live cell imaging mode indicating its possible photosensitizing effect. Intracellular generation of reactive oxygen species (ROS) by FAE played a critical role in mediating apoptotic cell death and photosensitizing activity. FAE induced dose and time dependent inhibition of cancer cell growth which was associated with Bax translocation and mitochondria mediated apoptosis with the activation of Caspase 9 dependent Caspase cascade. FAE also possessed strong photosensitizing effect on cancer cell line that was mediated through rapid mitochondrial transmembrane potential loss and partial Caspase activation involving generation of intracellular ROS.  相似文献   

5.
Paclitaxel (PTX), a microtubule-active drug, causes mitotic arrest leading to apoptosis in certain tumor cell lines. Here we investigated the effects of PTX on human arterial smooth muscle cell (SMC) cells. In SMC, PTX caused both (a) primary arrest in G1 and (b) post-mitotic arrest in G1. Post-mitotic cells were multinucleated (MN) with either 2C (near-diploid) or 4C (tetraploid) DNA content. At PTX concentrations above12 ng/ml, MN cells had 4C DNA content consistent with the lack of cytokinesis during abortive mitosis. Treatment with 6-12 ng/ml PTX yielded MN cells with 2C DNA content. Finally, 1-6 ng/ml of PTX, the lowest concentrations that affected cell proliferation, caused G1 arrest without multinucleation. It is important that PTX did not cause apoptosis in SMC. The absence of apoptosis could be explained by mitotic exit and G1 arrest as well as by low constitutive levels of caspase expression and by p53 and p21 induction. Thus, following transient mitotic arrest, SMC exit mitosis to form MN cells. These post-mitotic cells were subsequently arrested in G1 but maintained normal elongated morphology and were viable for at least 21 days. We conclude that in SMC PTX causes post-mitotic cell cycle arrest rather than cell death.  相似文献   

6.
Thyroid cancer (TC) was the most frequent thyroid malignant tumour, accounting for about 1% of all malignant tumours. Some long non-coding RNAs (lncRNAs) have been reported to exert essential tumour promotion effects, while caspase-9 (CASP9) gene could play a promotive role in the cell apoptosis in TC. However, whether they have a specific effect on TC remains unclear. Hence, this study aims to explore the relationship between LINC00607 and CASP9, and its effect in TC. LINC00607 expression in the TC tissues and cell lines was determined. Then, we explored the combination effect between a LINC00607 and a methylation inhibitor 5-Aza-dc in doxorubicin-resistant ARO cells using colony formation assay, flow cytometry, WST-1 and EdU assay, as well as in vivo tumour growth assay. Besides, the dual-luciferase reporter gene assay, RIP, ChIP, methylation-specific PCR and BSP method were employed to detect the relationship between LINC00607 and CASP9 and its methylation. LINC00607 expression was up-regulated in the doxorubicin-resistant TC cell lines and tissues and negatively correlated to the poor prognosis of TC patients. Knockdown of LINC00607 suppressed doxorubicin resistance, proliferation and colony formation, and promoted cell apoptosis of TC cells in vitro, as well as suppressed tumour growth in vivo, whereas LINC00607 overexpression was observed to exercise the opposite effects. Notably, it was also revealed that LINC00607 down-regulated the CASP9 expression by promoting CASP9 promoter methylation. In conclusion, LINC00607 could inhibit the apoptosis and augment the doxorubicin resistance of TC cells by decreasing CASP9 expression, which might provide a novel therapeutic target for TC treatment.  相似文献   

7.
目的:探讨新型过氧化物酶体增殖激活物受体(PPARr)激动剂DH9 对人肾癌细胞OS-RC-2 的增殖抑制作用。方法:予以不 同浓度的DH9 及罗格列酮作用OS-RC-2 细胞12 h、24 h和48 h,荧光素酶活性检测比较两种药物的PPARr激动效应;MTT 法 检测细胞增殖情况;流式细胞术观察细胞周期;AnnexinV-FITC/PI双染色流式细胞术测定细胞凋亡率;Western blot 检测细胞内 Bax 及Bcl-2等蛋白的变化。结果:不同浓度的DH9 与罗格列酮相比,对PPARr的激动效应DH9明显低于罗格列酮,增殖抑制 作用优于罗格列酮(P<0.05),并呈现明显的浓度、时间依赖性;加入PPARr抑制剂GW9662 前后DH9 的增殖抑制作用差异无统 计学意义(P>0.05);DH9 作用细胞48小时后,G0/G1 期细胞比例明显增加(P<0.05),S期细胞明显减少(P<0.05)。DH9可诱导细 胞凋亡,伴随Bcl-2 表达的减少以及Bax表达的增加。结论:OS-RC-2 细胞中,DH9 的增殖作用明显优于罗格列酮,且是通过 PPARr非依赖途径实现;DH9 能将OS-RC-2 细胞阻滞在G0/G1 期,并通过影响Bcl-2 和Bax 蛋白表达促进细胞凋亡。  相似文献   

8.
Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is over-expressed during G2/M phase in most cancer cells. In contrast, we previously reported that Survivin is expressed throughout the cell cycle in normal CD34+ hematopoietic stem and progenitor cells stimulated by the combination of Thrombopoietin (Tpo), Stem Cell Factor (SCF) and Flt3 ligand (FL). In order to address whether Survivin expression is specifically up-regulated by hematopoietic growth factors before cell cycle entry, we isolated quiescent CD34+ cells and investigated Survivin expression in response to growth factor stimulation. Survivin is up-regulated in CD34+ cells with 2N DNA content following growth factor addition, suggesting it becomes elevated during G0/G1. Survivin is barely detectable in freshly isolated umbilical cord blood (UCB) Ki-67negative and Cyclin Dnegative CD34+ cells, however incubation with Tpo, SCF and FL for 20 hrs results in up-regulation without entry of cells into cell cycle. Culture of G0 CD34+ cells isolated based on Hoechst 33342/PyroninY staining with Tpo, SCF and FL for 48 hrs, results in significantly elevated Survivin mRNA and protein levels. Moreover, labeling of fresh G0 CD34+ cells with 5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) before culture with growth factors for up to 72 hrs, revealed that Survivin expression was elevated in CFSEbright G0 CD34+ cells, indicating that up-regulation occurred before entry into G1. These results suggest that up-regulation of Survivin expression in CD34+ cells is an early event in cell cycle entry that is regulated by hematopoietic growth factors and does not simply reflect cell cycle progression and cell division.

Key Words:

Survivin, Cord blood, CD34+ cells, Cell cycle  相似文献   

9.
10.
It has been known that benzimidazol-4,7-diones have antiproliferative activity against various cancer cell lines. Recently, we have also reported that these compounds strongly inhibited the proliferation of vascular smooth muscle cell (SMC) and human umbilical vein endothelial cells (HUVECs). Although benzimidazol-4,7-diones have important biological activities, the molecular mechanism of the compounds in these cells remains to be elucidated. In order to investigate the anti-proliferation mechanism of the compounds in smooth muscle cell, we selected 6-anilino-6-chloro-5-chloro-1H-benzo{d}midazole-4,7-dione (BUD-0203) among 12 benzimidazol-4,7-dione derivatives and examined its antiproliferative effects. Phosphorylation of the extracellular-signal regulated kinase (ERK) reached a maximal level at 1h after treatment with BUD-0203 and was sustained during the examined period. We also observed that phosphorylation of p38 reached a maximal level at 4h and decreased to control levels after 8h. These results showed that BUD-0203 sustainedly activated MAP kinase pathways in SMC. However, this compound did not induce cell cycle arrest in G1 or G2 phase in these cells. We also demonstrated that BUD-0203 not only induced apoptosis of SMC, but it also strongly inhibited SMC migration induced by platelet-derived growth factor (PDGF) or serum. Taken together, our experiments indicate that benzimidazol-4,7-diones induce apoptosis of smooth muscle cell via simultaneously prolonged activation of MAP kinase pathways including ERK, p38, and JNK/SAPK, similar with the apoptosis mechanism reported previously.  相似文献   

11.
12.
通过过表达手段上调大肿瘤抑制因子1(1arge tumor suppressor gene 1,LATS1)基因在A549细胞中的表达,研究LATS1对A549细胞生长和细胞周期调控的作用。构建过表达LATS1基因的慢病毒载体,转染A549N胞株,采用RT-PCR和蛋白质印迹法检测转染后A549细胞中LATS1、YAPmRNA和蛋白的表达效率;流式细胞术检测细胞凋亡、周期情况:CCK-8检测细胞的增殖水平变化。结果发现,过表达LATS1慢病毒载体转染A549细胞株后,LATS1mRNA及蛋白表达水平高于未处理组及转染空载体组,YAPmRNA及蛋白表达水平低于未处理组及转染空载体组;过表达LATS1慢病毒转染后,A549细胞增殖率从第五天开始低于对照组(P〈0.05),过表达组细胞G1期比例明显增高(P〈0.05),凋亡率明显增加(P〈0.05),差异均有统计学意义。以上结果提示,LATS1可通过下调YAP的表达水平促进A549细胞的凋亡,诱导G1期阻滞,降低细胞的增殖能力。  相似文献   

13.
沙利度胺是一种抗血管生成药物,临床上用于治疗多种肿瘤,但其抗肿瘤血管生成机制尚不十分清楚. 本文采用MTT法观察沙利度胺对体外培养的血管内皮细胞增殖的影响. 结果发现,沙利度胺能够抑制血管内皮细胞的增殖,其IC50为16.47 μg/mL;然后采用Hoechst染色和流式细胞仪检测细胞凋亡和细胞周期,发现沙利度胺能够诱导内皮细胞凋亡,并干扰细胞的周期,出现G0/G1期阻滞. 最后,通过Western印迹方法分析沙利度胺对血管内皮细胞Bcl-2蛋白表达的影响,发现抗凋亡的Bcl-2蛋白表达水平随沙利度胺浓度增大而降低. 初步结果提示,沙利度胺可能通过阻遏抗凋亡分子Bcl-2表达,激活诱导G1期阻滞的信号通路而抑制内皮细胞新生,从而抑制肿瘤生长. 诱导内皮细胞凋亡及G1期阻滞的具体分子机制正在研究中.  相似文献   

14.
Ryu DS  Baek GO  Kim EY  Kim KH  Lee DS 《BMB reports》2010,43(11):750-755
Crude Orostachys japonicus polysaccharide extract (OJP) was prepared by hot steam extraction. Polysaccharides (OJPI) were separated from OJP by gel filtration chromatography and phenol-sulfuric acid assay. The average molecular weight of the OJPI was 30-50 kDa. The anti-proliferative effect of OJPI on HT-29 human colon cancer cells was investigated via morphology study, cell viability assay, apoptosis assay, cell cycle analysis, and cDNA microarray. OJPI inhibited proliferation and growth of HT29 cells and also stimulated apoptosis in a dose- and time-dependent manner. In cell cycle analysis, treatment with OJPI resulted in a marked increase of cells in the G0 (sub G1) and G2/M phases. To screen for genes involved in the induction of cell cycle arrest and apoptosis, the gene expression profiles of HT-29 cells treated with OJPI were examined by cDNA microarray, revealing that a number of genes were up- or down-regulated by OJPI. Whereas several genes involved in anti-apoptosis, cell proliferation and growth, and cell cycle regulation were down-regulated, expression levels of several genes involved in apoptosis, tumor suppression, and other signal transduction events were up-regulated. These results suggest that OJPI inhibits the growth of HT-29 human colon cancer cells by various apoptosis-aiding activities as well as apoptosis itself. Therefore, OJPI deserve further development as an effective agent exhibiting anticancer activity.  相似文献   

15.
Several studies suggest that mesenchymal stem cells (MSCs) possess antitumor properties; however, the exact mechanisms remain unclear. Recently, microvesicles (MVs) are considered as a novel avenue intercellular communication, which may be a mediator in MSCs-related antitumor effect. In the present study, we evaluated whether MVs derived from human umbilical cord Wharton’s jelly mesenchymal stem cells (hWJMSCs) may inhibit bladder tumor T24 cells growth using cell culture and the BALB/c nu/nu mice xenograft model. CCK-8 assay and Ki-67 immunostaining were performed to estimate cell proliferation in vitro and in vivo. Flow cytometry and TUNEL assay were used to assess cell cycle and apoptosis. To study the conceivable mechanism by which hWJMSC-MVs attenuate bladder tumor T24 cells, we estimated the expression of Akt/p-Akt, p-p53, p21 and cleaved Caspase 3 by Western blot technique after exposing T24 cells to hWJMSC-MVs for 24, 48 and 72h. Our data indicated that hWJMSC-MVs can inhibit T24 cells proliferative viability via cell cycle arrest and induce apoptosis in T24 cells in vitro and in vivo. This study showed that hWJMSC-MVs down-regulated phosphorylation of Akt protein kinase and up-regulated cleaved Caspase 3 during the process of anti-proliferation and pro-apoptosis in T24 cells. These results demonstrate that hWJMSC-MVs play a vital role in hWJMSC-induced antitumor effect and may be a novel tool for cancer therapy as a new mechanism of cell-to-cell communication.  相似文献   

16.
Protein tyrosine kinase (PTK) inhibitors have been reported to inhibit proliferation of vascular smooth muscle cells (SMC). To elucidate the made of this inhibition, the effects on the cell cycle of cultured vascular SMC of three PTK inhibitors with different modes of action (methyl 2,5-dihydroxyeinnamate, genistein, and herbimycin A) were studied. Rat aortic SMC were synchronized to the G0 phase of the cell cycle and then released to proceed through the cell cycle by the addition of platelet-derived growth factor (PDGF), and [3H]thymidine incorporation into DNA was measured. The three PTK inhibitors all inhibited PDGF-induced DNA synthesis in a dose-dependent fashion, with IC50 values of 4.7 ± 1.4 μM for methyl 2,5.dihydroxycinnamate, 6.7 ± 2.5 μM for genistein, and 0.17 ± 0.07 μM for herbimycin A. Time course studies suggested that the agents inhibited early G1 phase but not the G0-G1 transition. The lack of effect on the G0-G1 transition was also supported by the finding that the agents did not inhibit the ligand-induced autophosphorylation of PDGF receptor nor the induction of c-fos mRNA at concentrations which were sufficient to inhibit DNA synthesis. PTK inhibitors inhibited progression of the S phase when they were added to SMC that had been arrested at the G1-S border with hydroxyurea. Methyl 2,5-dihydroxyeinnamate also blocked the M phase when it was added to SMC cultured in the presence of 10% fetal calf serum, while genistein and herbimycin A did not inhibit the M phase under the same experimental conditions. In accordance with our previous observation, methyl 2,5-dihydroxycinnamate impaired microtubule networks and formation of the mitotic spindle during the M phase. Our findings indicated that PTK inhibitors inhibit multiple steps of the vascular SMC cell cycle.  相似文献   

17.
18.
19.
目的研究共转染CDK1、CDK2siRNA同时抑制CDKI、CDK2蛋白表达对肿瘤细胞周期和细胞凋亡的影响,探讨细胞周期主要调控分子在肿瘤细胞凋亡中的作用。方法以人宫颈癌细胞株HeLa细胞为研究对象,用脂质体lipofectamine2000同时转染CDKl和CDK2siRNA。在转染后48、60h收集细胞,用Western印迹检测CDKl、CDK2蛋白的表达,AnnexinV/PI检测转染细胞的凋亡,流式细胞术DNA含量检测分析细胞周期。转染细胞进行瑞氏一姬姆萨染色(Wright—Giemsa)后在显微镜下观察其形态变化i结果共转染CDKl、CDK2siRNA后48和60h,Western印迹结果显示CDKl和CDK2蛋白的表达都同时降低。共转染CDKl、CDK2siRNA后,细胞周期S期和G1/M期比例与对照相比有明显增加;共转染细胞经瑞氏一姬姆萨染色后在显微镜下可见双核或多核细胞增多;AnnexinV/PI检测结果显示共转染CDK1、CDK2siRNA的细胞在48和60h细胞凋亡率与对照相比有显著的升高。结论siRNA干扰导致的CDKI、CDK2表达同时降低不仅导致细胞周期s期和G1/M期的阻滞,也诱导了肿瘤细胞的凋亡。  相似文献   

20.
BACKGROUND: The prostate androgen-regulated (PAR) gene is ubiquitously overexpressed in prostate cancer (PCa) cells and is involved in proliferation of PCa. However, the mechanism by which the modulation of PAR gene expression elicits its biological effects on PCa cells is not well documented. Here, we investigate the mechanism of PAR depletion inhibiting PCa cell growth. METHODS: PAR expression was depleted by small interfering RNA (siRNA) and its subsequent effects on proliferation of PC3 cells were determined by the trypan blue exclusion assay. Flow cytometric analysis provided the evidence for the progression of cell cycle and the induction of apoptosis which was further confirmed by the observation of cleavage of poly(ADP-ribose) polymerase. Western blot analysis was performed to investigate the involvement of critical molecular events known to regulate the cell cycle and the apoptotic machinery. RESULTS: siRNA transfection results in a dose-dependent inhibition of cell growth in PC3 cells by causing G2/M phase cell cycle arrest and apoptosis. The G2/M arrest by PAR depletion was associated with decreased levels of cyclin B1, pCdc2 (Tyr15), Cdc2 and Cdc25C. PAR depletion also was found to result in inhibition of procaspases 9, 8, 6 and 3 with significant increase in the ratio of Bax : Bcl-2. CONCLUSIONS: Our data indicate that PAR depletion induces G2/M arrest via the Cdc25C-Cdc2/cyclin B1 pathway. Furthermore, the results of the present study point toward involvement of pathways mediated by both caspase 8 and caspase 9 in apoptosis induction by PAR depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号