首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic Parameters of Denitrification in a River Continuum   总被引:4,自引:0,他引:4       下载免费PDF全文
Kinetic parameters for nitrate reduction in intact sediment cores were investigated by using the acetylene blockage method at five sites along the Swale-Ouse river system in northeastern England, including a highly polluted tributary, R. Wiske. The denitrification rate in sediment containing added nitrate exhibited a Michaelis-Menten-type curve. The concentration of nitrate for half-maximal activity (Kmap) by denitrifying bacteria increased on passing downstream from 13.1 to 90.4 μM in the main river, but it was highest (640 μM) in the Wiske. The apparent maximal rate (Vmaxap) ranged between 35.8 and 324 μmol of N m−2 h−1 in the Swale-Ouse (increasing upstream to downstream), but it was highest in the Wiske (1,194 μmol N m−2 h−1). A study of nitrous oxide (N2O) production at the same time showed that rates ranged from below the detection limit (0.05 μmol of N2O-N m−2 h−1) at the headwater site to 27 μmol of N2O-N m−2 h−1 at the downstream site. In the Wiske the rate was up to 570 μmol of N2O-N m−2 h−1, accounting for up to 80% of total N gas production.  相似文献   

2.
The effect of CN and N2 on the electrical membrane potential (Em) was compared with that of CN on the ATP levels in cotyledons of Gossypium hirsutum and in Lemna gibba L. In mature cotton tissue, CN depolarized Em to the energy-independent diffusion potential (ED) in the dark. In the light Em recovered transiently. The same was observed in leaves of Nicotiana, Avena, Impatiens, Kalanchoë, and in Lemna. In contrast, in young cotton cotyledons and tobacco leaves and, to a large extent, in +sucrose-grown Lemna, Em was depolarized to ED also in the light in a similar way as in the dark.

In Lemna grown without sucrose, the energy-dependent component of Em was only partially depolarized by CN in dark or light. Cyanide plus salicylhydroxamic acid completely reduced Em to ED, abolished respiration and photosynthesis, and severely diminished the ATP level. This suggests the operation of a CN-insensitive respiration in uninjured Lemna. The initial CN-induced decay of the ATP level in cotton and Lemna was more rapid than the decay of Em. CN-induced oscillations of the ATP level were followed by similar but slower oscillations of Em. This supports the view of a general dependence of Em on ATP. Discrepancies between inhibitor-induced changes of Em and ATP levels are suggested to result from additional regulation of Em by the cytoplasmatic pH value.

A comparison of ED in young and mature cotton cotyledons in the dark and in the light suggests that in growing young cotyledons the different effect of CN in the light is due to a less effective photosynthesis together with high mitochondrial respiration. In Lemna and in mature cotton tissue, Em in the light is maintained by noncyclic photophosphorylation and photosystem II, which is only partly inhibited by CN, thus resulting in an incomplete depolarization and recovery of Em. Complete inhibition of photosynthetic O2 evolution and membrane depolarization by CN plus salicylhydroxamic acid are suggested to result from photooxidation.

  相似文献   

3.
Using a combination of process rate determination, microsensor profiling and molecular techniques, we demonstrated that denitrification, and not anaerobic ammonium oxidation (anammox), is the major nitrogen loss process in biological soil crusts from Oman. Potential denitrification rates were 584±101 and 58±20 μmol N m−2 h−1 for cyanobacterial and lichen crust, respectively. Complete denitrification to N2 was further confirmed by an 15NO3 tracer experiment with intact crust pieces that proceeded at rates of 103±19 and 27±8 μmol N m−2 h−1 for cyanobacterial and lichen crust, respectively. Strikingly, N2O gas was emitted at very high potential rates of 387±143 and 31±6 μmol N m−2 h−1 from the cyanobacterial and lichen crust, respectively, with N2O accounting for 53–66% of the total emission of nitrogenous gases. Microsensor measurements revealed that N2O was produced in the anoxic layer and thus apparently originated from incomplete denitrification. Using quantitative PCR, denitrification genes were detected in both the crusts and were expressed either in comparable (nirS) or slightly higher (narG) numbers in the cyanobacterial crusts. Although 99% of the nirS sequences in the cyanobacterial crust were affiliated to an uncultured denitrifying bacterium, 94% of these sequences were most closely affiliated to Paracoccus denitrificans in the lichen crust. Sequences of nosZ gene formed a distinct cluster that did not branch with known denitrifying bacteria. Our results demonstrate that nitrogen loss via denitrification is a dominant process in crusts from Oman, which leads to N2O gas emission and potentially reduces desert soil fertility.  相似文献   

4.
The kinetic parameters Km, Vmax, Tt (turnover time), and v (natural velocity) were determined for H2 and acetate conversion to methane by Wintergreen Lake sediment, using short-term (a few hours) methods and incubation temperatures of 10 to 14°C. Estimates of the Michaelis-Menten constant, Km, for both the consumption of hydrogen and the conversion of hydrogen to methane by sediment microflora averaged about 0.024 μmol g−1 of dry sediment. The maximal velocity, Vmax, averaged 4.8 μmol of H2 g−1 h−1 for hydrogen consumption and 0.64 μmol of CH4 g−1 h−1 for the conversion of hydrogen to methane during the winter. Estimated natural rates of hydrogen consumption and hydrogen conversion to methane could be calculated from the Michaelis-Menten equation and estimates of Km, Vmax, and the in situ dissolved-hydrogen concentration. These results indicate that methane may not be the only fate of hydrogen in the sediment. Among several potential hydrogen donors tested, only formate stimulated the rate of sediment methanogenesis. Formate conversion to methane was so rapid that an accurate estimate of kinetic parameters was not possible. Kinetic experiments using [2-14C]acetate and sediments collected in the summer indicated that acetate was being converted to methane at or near the maximal rate. A minimum natural rate of acetate conversion to methane was estimated to be about 110 nmol of CH4 g−1 h−1, which was 66% of the Vmax (163 nmol of CH4 g−1 h−1). A 15-min preincubation of sediment with 5.0 × 10−3 atm of hydrogen had a pronounced effect on the kinetic parameters for the conversion of acetate to methane. The acetate pool size, expressed as the term Km + Sn (Sn is in situ substrate concentration), decreased by 37% and Tt decreased by 43%. The Vmax remained relatively constant. A preincubation with hydrogen also caused a 37% decrease in the amount of labeled carbon dioxide produced from the metabolism of [U-14C]valine by sediment heterotrophs.  相似文献   

5.
Kinetics of Denitrifying Growth by Fast-Growing Cowpea Rhizobia   总被引:3,自引:2,他引:1       下载免费PDF全文
Two fast-growing strains of cowpea rhizobia (A26 and A28) were found to grow anaerobically at the expense of NO3, NO2, and N2O as terminal electron acceptors. The two major differences between aerobic and denitrifying growth were lower yield coefficients (Y) and higher saturation constants (Ks) with nitrogenous oxides as electron acceptors. When grown aerobically, A26 and A28 adhered to Monod kinetics, respectively, as follows: Ks, 3.4 and 3.8 μM; Y, 16.0 and 14.0 g · cells eq−1; μmax, 0.41 and 0.33 h−1. Yield coefficients for denitrifying growth ranged from 40 to 70% of those for aerobic growth. Only A26 adhered to Monod kinetics with respect to growth on all three nitrogenous oxides. The apparent Ks values were 41, 270, and 460 μM for nitrous oxide, nitrate, and nitrite, respectively; the Ks for A28 grown on nitrate was 250 μM. The results are kinetically and thermodynamically consistent in explaining why O2 is the preferred electron acceptor. Although no definitive conclusions could be drawn regarding preferential utilization of nitrogenous oxides, nitrite was inhibitory to both strains and effected slower growth. However, growth rates were identical (μmax, 0.41 h−1) when A26 was grown with either O2 or NO3 as an electron acceptor and were only slightly reduced when A28 was grown with NO3 (0.25 h−1) as opposed to O2 (0.33 h−1).  相似文献   

6.
A field experiment was conducted for 5 years to examine the effects of non-flooded mulching cultivation on crop yield, internal nutrient efficiency and soil properties in rice–wheat (R–W) rotations of the Chengdu Plain, southwest China. Compared with traditional flooding (TF), non-flooded plastic film mulching (PM) resulted in 12 and 11% higher average rice (Oryza sativa L.) yield and system productivity (combined rice and wheat yields), and the trends in rice and wheat (Triticum aestivum L.) yields under PM were stable over time. However, non-flooded wheat straw mulching (SM) decreased average rice yield by 11% compared with TF, although no significant difference in system productivity was found between SM and TF. Uptakes of N and K by rice under PM were higher than those under TF and SM, but internal nutrient efficiency was significantly lower (N) or similar (K) under PM compared to SM and TF. This implies that more N and K accumulated in rice straw under PM. After 5-year rice–wheat rotation, apparent P balances (112–160 kg ha−1) were positive under all three cultivation systems. However, the K balances were negative under PM (−419 kg ha−1) and TF (−90 kg ha−1) compared with SM (45 kg ha−1). This suggests that higher K inputs from fertilizer, straw or manure may be necessary, especially under PM. After five rice seasons and four wheat seasons, non-flooded mulching cultivation led to similar (PM) or higher (SM) soil organic carbon (SOC), total N (TN) and alkali hydrolyzable N (AH-N) in the top 0–5 and 5–12 cm layers compared with TF. SOC, TN, AH-N and Olsen-P (OP) in the sub-surface layer (12–24 cm) were significantly higher under PM or SM than under TF, indicating that rice under non-flooded mulching conditions may fail to make use of nutrients from the subsoil. Thus, the risk of decline in soil fertility under non-flooded mulching cultivation could be very low if input levels match crop requirements. Our data indicate that PM and SM may be alternative options for farmers using R–W rotations for enhancement or maintenance of system productivity and soil fertility.  相似文献   

7.
The kinetics of growth and amylase production of Saccharomycopsis fibuligera were studied in a chemostat on a synthetic potato processing blancher water. Dilution rates (D) from 0.101 to 0.480 h−1 were examined. A mathematical model based on the Monod equation was developed. The yield of cell mass from carbohydrates was constant and equal to 0.84. The maximum specific growth rate and the Monod constant were determined to be 0.596 h−1 and 0.226 mg/ml, respectively. An equation for the steady-state starch concentrations was empirically derived. The steady-state noncarbohydrate carbon levels rose linearly with D. Reducing sugars were the growth-limiting substrate, and their steady-state levels conformed to Monod kinetics. The yield of amylase from the cell mass (Yz) declined as D rose and was described by the equation Yz = (−8.005D + 4.076). The model predicted that the maximum production of cell mass should occur at D = 0.35 h−1 and the maximum production of amylase should occur at D = 0.22 h−1. The mathematical model presented agreed with the experimental results in its prediction of the steady-state level of reducing sugar, starch, cell mass, and amylase concentrations as well as the productivity of amylase.  相似文献   

8.
A bacterial strain, PM1, which is able to utilize methyl tert-butyl ether (MTBE) as its sole carbon and energy source, was isolated from a mixed microbial consortium in a compost biofilter capable of degrading MTBE. Initial linear rates of MTBE degradation by 2 × 106 cells ml−1 were 0.07, 1.17, and 3.56 μg ml−1 h−1 for initial concentrations of 5, 50, and 500 μg MTBE ml−1, respectively. When incubated with 20 μg of uniformly labeled [14C]MTBE ml−1, strain PM1 converted 46% to 14CO2 and 19% to 14C-labeled cells within 120 h. This yield is consistent with the measurement of protein accumulation at different MTBE concentrations from which was estimated a biomass yield of 0.18 mg of cells mg MTBE−1. Strain PM1 was inoculated into sediment core material collected from a contaminated groundwater plume at Port Hueneme, California, in which there was no evidence of MTBE degradation. Strain PM1 readily degraded 20 μg of MTBE ml−1 added to the core material. The rate of MTBE removal increased with additional inputs of 20 μg of MTBE ml−1. These results suggest that PM1 has potential for use in the remediation of MTBE-contaminated environments.  相似文献   

9.
Rates of primary and bacterial secondary production in Lake Arlington, Texas, were determined. The lake is a warm (annual temperature range, 7 to 32°C), shallow, monomictic reservoir with limited macrophyte development in the littoral zone. Samples were collected from six depths within the photic zone from a site located over the deepest portion of the lake. Primary production and bacterial production were calculated from NaH14CO3 and [methyl-3H]thymidine incorporation, respectively. Peak instantaneous production ranged between 14.8 and 220.5 μg of C liter−1 h−1. There were two distinct periods of high rates of production. From May through July, production near the metalimnion exceeded 100 μg of C liter−1 h−1. During holomixis, production throughout the water column was in excess of 100 μg of C liter−1 h−1 and above 150 μg of C liter−1 h−1 near the surface. Annual areal primary production was 588 g of C m−2. Bacterial production was markedly seasonal. Growth rates during late fall through spring were typically around 0.002 h−1, and production rates were typically 5 μg of C liter−1 h−1. Growth rates were higher during warmer parts of the year and reached 0.03 h−1 by August. The maximum instantaneous rate of bacterial production was approximately 45 μg of C liter−1 h−1. Annual areal bacterial production was 125 g of C m−2. Temporal and spatial distributions of bacterial numbers and activities coincided with temporal and spatial distributions of primary production. Areal primary and bacterial secondary production were highly correlated (r = 0.77, n = 15, P < 0.002).  相似文献   

10.
Most models of carbon gain as a function of photosynthetic irradiance assume an instantaneous response to increases and decreases in irradiance. High- and low-light-grown plants differ, however, in the time required to adjust to increases and decreases in irradiance. In this study the response to a series of increases and decreases in irradiance was observed in Chrysanthemum × morifolium Ramat. “Fiesta” and compared with calculated values assuming an instantaneous response. There were significant differences between high- and low-light-grown plants in their photosynthetic response to four sequential photosynthetic photon flux density (PPFD) cycles consisting of 5-minute exposures to 200 and 400 micromoles per square meter per second (μmol m−2s−1). The CO2 assimilation rate of high-light-grown plants at the cycle peak increased throughout the PPFD sequence, but the rate of increase was similar to the increase in CO2 assimilation rate observed under continuous high-light conditions. Low-light leaves showed more variability in their response to light cycles with no significant increase in CO2 assimilation rate at the cycle peak during sequential cycles. Carbon gain and deviations from actual values (percentage carbon gain over- or underestimation) based on assumptions of instantaneous response were compared under continuous and cyclic light conditions. The percentage carbon gain overestimation depended on the PPFD step size and growth light level of the leaf. When leaves were exposed to a large PPFD increase, the carbon gain was overestimated by 16 to 26%. The photosynthetic response to 100 μmol m−2 s−1 PPFD increases and decreases was rapid, and the small overestimation of the predicted carbon gain, observed during photosynthetic induction, was almost entirely negated by the carbon gain underestimation observed after a decrease. If the PPFD cycle was 200 or 400 μmol m−2 s−1, high- and low-light leaves showed a carbon gain overestimation of 25% that was not negated by the underestimation observed after a light decrease. When leaves were exposed to sequential PPFD cycles (200-400 μmol m−2 s−1), carbon gain did not differ from leaves exposed to a single PPFD cycle of identical irradiance integral that had the same step size (200-400-200 μmol m−2 s−1) or mean irradiance (200-300-200 μmol m−2 s−1).  相似文献   

11.
Experiments document the ability of two species of autotrophic methanogens to assimilate and utilize organic substrates as the nutrient sulfur or nitrogen source and as a carbon source during growth on H2-CO2. Methanobacterium thermoautotrophicum strain ΔH and the mesophilic species Methanobacterium sp. strain Ivanov grew with glutamine as the nitrogen source or cysteine as the sulfur source. M. thermoautotrophicum also utilized urea as the nitrogen source and as a carbon precursor for methane and cell synthesis. Methanobacterium sp. strain Ivanov grew with methionine as the sulfur source. The growth rate of two different Methanobacterium species was lower on an organic N or S source than on ammonium or sulfide. 35S and 14C tracer studies demonstrated that amino acid or urea assimilation correlated with time and amount of growth. The rate of [35S]cysteine incorporation was similar in strain ΔH (34 nmol h−1 mg of cells−1) and strain Ivanov (23 nmol h−1 mg of cells−1). However, the rate of [14C]acetate incorporation was dramatically different (17 versus 208 nmol h−1 mg of cells−1 in strains ΔH and Ivanov, respectively). [14C]acetate accounted for 1.3 and 21.2% of the total cell carbon synthesized by strains ΔH and Ivanov, respectively. Amino acids and urea were mainly assimilated into the cell protein fraction, but accounted for less than 2.0% of the total cell carbon synthesized. The data suggest that a biochemical-genetic approach to understanding cell carbon synthesis in methanogens is feasible; mutants that are auxotrophic for either acetate, glutamine, cysteine, or methionine are suggested as future targets for genetic studies.  相似文献   

12.
We grew velvetleaf (Abutilon theophrasti Medic.) and cotton (Gossypium hirsutum L. var. Stoneville 213) at three irradiances and determined the photosynthetic responses of single leaves to a range of six irradiances from 90 to 2000 μeinsteins m−2sec−1. In air containing 21% O2, velvetleaf and cotton grown at 750 μeinsteins m−2sec−1 had maximum photosynthetic rates of 18.4 and 21.9 mg of CO2 dm−2hr−1, respectively. Maximum rates for leaves grown at 320 and 90 μeinsteins m−2sec−1 were 15.3 and 10.3 mg of CO2 dm−2hr−1 in velvetleaf and 12 and 6.7 mg of CO2 dm−2hr−1 in cotton, respectively. In 1 O2, maximum photosynthetic rates were 1.5 to 2.3 times the rates in air containing 21% O2, and plants grown at medium and high irradiance did not differ in rate. In both species, stomatal conductance was not significantly affected by growth irradiance. The differences in maximum photosynthetic rates were associated with differences in mesophyll conductance. Mesophyll conductance increased with growth irradiance and correlated positively with mesophyll thickness or volume per unit leaf area, chlorophyll content per unit area, and photosynthetic unit density per unit area. Thus, quantitative changes in the photosynthetic apparatus help account for photosynthetic adaptation to irradiance in both species. Net assimilation rates calculated for whole plants by mathematical growth analysis were closely correlated with single-leaf photosynthetic rates.  相似文献   

13.
Hydrogen production by incubated cyanobacterial epiphytes occurred only in the dark, was stimulated by C2H2, and was inhibited by O2. Addition of NO3 inhibited dark, anaerobic H2 production, whereas the addition of NH4+ inhibited N2 fixation (C2H2 reduction) but not dark H2 production. Aerobically incubated cyanobacterial aggregates consumed H2, but light-incubated rates (3.6 μmol of H2 g−1 h−1) were statistically equivalent to dark uptake rates (4.8 μmol of H2 g−1 h−1), which were statistically equivalent to dark, anaerobic production rates (2.5 to 10 μmol of H2 g−1 h−1). Production rates of H2 were fourfold higher for aggregates in a more advanced stage of decomposition. Enrichment cultures of H2-producing fermentative bacteria were recovered from freshly harvested, H2-producing cyanobacterial aggregates. Hydrogen production in these cyanobacterial communities appears to be caused by the resident bacterial flora and not by the cyanobacteria. In situ areal estimates of dark H2 production by submerged epiphytes (6.8 μmol of H2 m−2 h−1) were much lower than rates of light-driven N2 fixation by the epiphytic cyanobacteria (310 μmol of C2H4 m−2 h−1).  相似文献   

14.
This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009–2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (−11 to −110 g CO2 m−2 yr−1) compared to El Niño and neutral years (−5 to −43.5 g CO2 m−2 yr−1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m−2 yr−1) except in one exceptionally wet year that was associated with an El Niño phase (−16 g CO2 m−2 yr−1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades.  相似文献   

15.
Denitrification in San Francisco Bay Intertidal Sediments   总被引:23,自引:17,他引:6       下载免费PDF全文
The acetylene block technique was employed to study denitrification in intertidal estuarine sediments. Addition of nitrate to sediment slurries stimulated denitrification. During the dry season, sediment-slurry denitrification rates displayed Michaelis-Menten kinetics, and ambient NO3 + NO2 concentrations (≤26 μM) were below the apparent Km (50 μM) for nitrate. During the rainy season, when ambient NO3 + NO2 concentrations were higher (37 to 89 μM), an accurate estimate of the Km could not be obtained. Endogenous denitrification activity was confined to the upper 3 cm of the sediment column. However, the addition of nitrate to deeper sediments demonstrated immediate N2O production, and potential activity existed at all depths sampled (the deepest was 15 cm). Loss of N2O in the presence of C2H2 was sometimes observed during these short-term sediment incubations. Experiments with sediment slurries and washed cell suspensions of a marine pseudomonad confirmed that this N2O loss was caused by incomplete blockage of N2O reductase by C2H2 at low nitrate concentrations. Areal estimates of denitrification (in the absence of added nitrate) ranged from 0.8 to 1.2 μmol of N2 m−2 h−1 (for undisturbed sediments) to 17 to 280 μmol of N2 m−2 h−1 (for shaken sediment slurries).  相似文献   

16.
Two methanotrophic bacteria, Methylobacter albus BG8 and Methylosinus trichosporium OB3b, oxidized atmospheric methane during batch growth on methanol. Methane consumption was rapidly and substantially diminished (95% over 9 days) when washed cell suspensions were incubated without methanol in the presence of atmospheric methane (1.7 ppm). Methanotrophic activity was stimulated after methanol (10 mM) but not methane (1,000 ppm) addition. M. albus BG8 grown in continuous culture for 80 days with methanol retained the ability to oxidize atmospheric methane and oxidized methane in a chemostat air supply. Methane oxidation during growth on methanol was not affected by methane deprivation. Differences in the kinetics of methane uptake (apparent Km and Vmax) were observed between batch- and chemostat-grown cultures. The Vmax and apparent Km values (means ± standard errors) for methanol-limited chemostat cultures were 133 ± 46 nmol of methane 108 cells−1 h−1 and 916 ± 235 ppm of methane (1.2 μM), respectively. These values were significantly lower than those determined with batch-grown cultures (Vmax of 648 ± 195 nmol of methane 108 cells−1 h−1 and apparent Km of 5,025 ± 1,234 ppm of methane [6.3 μM]). Methane consumption by soils was stimulated by the addition of methanol. These results suggest that methanol or other nonmethane substrates may promote atmospheric methane oxidation in situ.  相似文献   

17.
Data from analyses of continuous culture fermentation of insoluble cellulose by Ruminococcus albus 7 were used to derive constants for the rate of cellulose hydrolysis and fermentation, growth yield, and maintenance. Cellulose concentration was 1% in the nutrient reservoir, and hydraulic retention times of 0.5, 1.0, 1.5, 1.75, and 2.0 days were used. Concentrations of reducing sugars in the cultures were negligible (less than 1%) compared with the amount of hydrolyzed cellulose, indicating that cellulose hydrolysis was the rate-limiting step of the fermentation. The rate of utilization of cellulose depended on the steady-state concentration of cellulose and was first order with a rate constant (k) of 1.18 day−1. The true microbial growth yield (Y) was 0.11 g g−1, the maintenance coefficient (m) was 0.10 g g−1 h−1, and the maximum YATP was 7.7 g of biomass (dry weight) mol of ATP−1.  相似文献   

18.
Rapid Methane Oxidation in a Landfill Cover Soil   总被引:28,自引:5,他引:28       下载免费PDF全文
Methane oxidation rates observed in a topsoil covering a retired landfill are the highest reported (45 g m−2 day−1) for any environment. This microbial community had the capacity to rapidly oxidize CH4 at concentrations ranging from <1 ppm (microliters per liter) (first-order rate constant [k] = −0.54 h−1) to >104 ppm (k = −2.37 h−1). The physiological characteristics of a methanotroph isolated from the soil (characteristics determined in aqueous medium) and the natural population, however, were similar to those of other natural populations and cultures: the Q10 and optimum temperature were 1.9 and 31°C, respectively, the apparent half-saturation constant was 2.5 to 9.3 μM, and 19 to 69% of oxidized CH4 was assimilated into biomass. The CH4 oxidation rate of this soil under waterlogged (41% [wt/vol] H2O) conditions, 6.1 mg liter−1 day−1, was near rates reported for lake sediment and much lower than the rate of 116 mg liter−1 day−1 in the same soil under moist (11% H2O) conditions. Since there are no large physiological differences between this microbial community and other CH4 oxidizers, we attribute the high CH4 oxidation rate in moist soil to enhanced CH4 transport to the microorganisms; gas-phase molecular diffusion is 104-fold faster than aqueous diffusion. These high CH4 oxidation rates in moist soil have implications that are important in global climate change. Soil CH4 oxidation could become a negative feedback to atmospheric CH4 increases (and warming) in areas that are presently waterlogged but are projected to undergo a reduction in summer soil moisture.  相似文献   

19.
The carbon monoxide consumption rates of the carboxydobacteria Pseudomonas (Seliberia) carboxydohydrogena, P. carboxydovorans, and P. carboxydoflava were measured at high (50%) and low (0.5 μl liter−1) mixing ratios of CO in air. CO was only consumed when the bacteria had been grown under CO-autotrophic conditions. As an exception, P. carboxydoflava consumed CO also after heterotrophic growth on pyruvate. At low cell densities the CO consumption rates measured at low CO mixing ratios were similar in cell suspensions and in mixtures of bacteria in soil. CO consumption observed in natural soil (loess, eolian sand, chernozem) as well as in suspensions or soil mixtures of carboxydobacteria showed Michaelis-Menten kinetics. The Km values for CO of the carboxydobacteria (Km = 465 to 1,110 μl of CO liter−1) were much higher than those of the natural soils (Km = 5 to 8 μl of CO liter−1). Considering the difference of the Km values and the observed Vmax values, carboxydobacteria cannot contribute significantly to the consumption of atmospheric CO.  相似文献   

20.
Diel and seasonal variations in denitrification were determined in a littoral lake sediment colonized by the perennial macrophyte Littorella uniflora (L.) Aschers. In the winter, the activity was low (5 μmol of N m−2 h−1) and was restricted to the uppermost debris layer at a depth of 0 to 1 cm. By midsummer, the activity increased to 50 μmol of N m−2 h−1 and was found throughout the root zone to a depth of 10 cm. The root zone accounted for as much as 50 to 70% of the annual denitrification. A significant release of organic substrates from the roots seemed to determine the high activities of root zone denitrification in the summer. The denitrification in the surface layer and in the root zone formed two distinct activity zones in the summer, when the root zone also contained nitrification activity, as indicated from the accumulations of NO3. Light conditions inhibited denitrification in both the surface layer and the upper part of the root zone, suggesting that a release of O2 by benthic algae and from the roots of L. uniflora controlled a diel variation of denitrification. In midsummer, the rate of denitrification in both the surface layer and the upper part of the root zone was limited by NO3. In the growth season, there was evidence for a significant population of denitrifiers closely associated with the root surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号