首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phillips, R., Press, M. C, Bingham, L. and Grimmer, C. 1988.Polyamines in cultured artichoke explants: effects are primarilyon xylogenesis rather than cell division.—J. exp. Bot.39: 473–480 The relationship between cell division and xylogenesis and polyaminemetabolism was investigated in short-term cultures of Helkmthustuberosus tuber explants via studies on inhibitors of polyaminebiosynthesis, exogenous supply of spermidine and comparisonsbetween proliferating and non-proliferating treatments. Difluoromethylarginine(DFMA) and difluoromethylornithine (DFMO) did not substantiallyaffect cell division rates but were inhibitory to xylem differentiation,especially higher concentrations of DFMO, which also stimulatedendogenous spermidine accumulation. Exogenously supplied spermidineinhibited xylogenesis much more than cell division at concentrationsof 1.0 mol m-3 and above after 3 d culture. A possible inversecorrelation between spermidine accumulation and cytodifferentiationis discussed. No significant differences in polyamines werefound between proliferating cultures and those in which DNAreplication and mitosis were blocked by gamma-irradiation, exceptfor the late appearance of putrescine in irradiated cultures,possibly as a senescence response. Key words: Polyamines, DFMA, DFMO, Helianthus tuberosus, cultured explants, cell division, xylem differentiation  相似文献   

2.
3.
Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions.Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints.Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design.  相似文献   

4.
A variety of similarities between visual and haptic object recognition suggests that the two modalities may share common representations. However, it is unclear whether such common representations preserve low-level perceptual features or whether transfer between vision and haptics is mediated by high-level, abstract representations. Two experiments used a sequential shape-matching task to examine the effects of size changes on unimodal and crossmodal visual and haptic object recognition. Participants felt or saw 3D plastic models of familiar objects. The two objects presented on a trial were either the same size or different sizes and were the same shape or different but similar shapes. Participants were told to ignore size changes and to match on shape alone. In Experiment 1, size changes on same-shape trials impaired performance similarly for both visual-to-visual and haptic-to-haptic shape matching. In Experiment 2, size changes impaired performance on both visual-to-haptic and haptic-to-visual shape matching and there was no interaction between the cost of size changes and direction of transfer. Together the unimodal and crossmodal matching results suggest that the same, size-specific perceptual representations underlie both visual and haptic object recognition, and indicate that crossmodal memory for objects must be at least partly based on common perceptual representations.  相似文献   

5.
In species where females mate with multiple males during a single ovulatory cycle, sperm competition is hypothesized to increase the rate of adaptive evolution of proteins expressed in male reproductive tissues through recurrent selective sweeps (positive selection). The hominoids, comprising apes and humans, are a group of closely related primates with extensive variation in mating behaviors and predicted levels of sperm competition. Since previous studies of individual male reproductive genes have shown evidence of positive selection, we estimated rates of evolution of a comprehensive set of proteins expressed in ejaculated semen. Our results show that these proteins in hominoids do not have elevated rates of nonsynonymous substitutions (Ka) compared with a control dataset of nonreproductive genes. Species with greater sperm competition do not have faster rates of seminal protein evolution. Although at these broad levels our hypotheses were not confirmed, further analyses indicate specific patterns of molecular evolution. Namely, the Ka of seminal genes is more strongly correlated with measures of tissue specificity than nonreproductive genes, suggesting that the former may more readily adapt to tissue-specific functions. Proteins expressed from the seminal vesicles evolve more rapidly than those from other male reproductive tissues. Also, several gene ontology categories show elevated rates of protein evolution, not seen in the control data set. While the generalization that male reproductive genes evolve rapidly in hominoids is an oversimplification, a subset of proteins can be identified that are likely targets for adaptive evolution driven by sexual selection.  相似文献   

6.
7.
Pain is a multidimensional experience, which includes sensory, cognitive, and affective aspects. Converging lines of evidence indicate that dopaminergic neurotransmission plays an important role in human pain perception. However, the precise effects of dopamine on different aspects of pain perception remain to be elucidated. To address this question, we experimentally decreased dopaminergic neurotransmission in 22 healthy human subjects using Acute Phenylalanine and Tyrosine Depletion (APTD). During APTD and a control condition we applied brief painful laser stimuli to the hand, assessed different aspects of pain perception, and recorded electroencephalographic responses. APTD-induced decreases of cerebral dopaminergic activity did not influence sensory aspects of pain perception. In contrast, APTD yielded increases of pain unpleasantness. The increases of unpleasantness ratings positively correlated with effectiveness of APTD. Our finding of an influence of dopaminergic neurotransmission on affective but not sensory aspects of phasic pain suggests that analgesic effects of dopamine might be mediated by indirect effects on pain affect rather than by direct effects on ascending nociceptive signals. These findings contribute to our understanding of the complex relationship between dopamine and pain perception, which may play a role in various clinical pain states.  相似文献   

8.
Ferrochelatase (protoheme ferrolyase, E.C. 4.99.1.1) is the terminal enzyme in heme biosynthesis and catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme IX (heme). Within the past two years, X-ray crystallographic data obtained with human ferrochelatase have clearly shown that significant structural changes occur during catalysis that are predicted to facilitate metal insertion and product release. One unanswered question about ferrochelatase involves defining the mechanism whereby some metals, such as divalent Fe, Co, Ni, and Zn, can be used by the enzyme in vitro to produce the corresponding metalloporphyrins, while other metals, such as divalent Mn, Hg, Cd, or Pb, are inhibitors of the enzyme. Through the use of high-resolution X-ray crystallography along with characterization of metal species via their anomalous diffraction, the identity and position of Hg, Cd, Ni, or Mn in the center of enzyme-bound porphyrin macrocycle were determined. When Pb, Hg, Cd, or Ni was present in the macrocycle, the conserved π helix was in the extended, partially unwound “product release” state. Interestingly, in the structure of ferrochelatase with Mn-porphyrin bound, the π helix is not extended or unwound and is in the “substrate-bound” conformation. These findings show that at least in the cases of Mn, Pb, Cd, and Hg, metal “inhibition” of ferrochelatase is not due to the inability of the enzyme to insert the metal into the macrocycle or by binding to a second metal binding site as has been previously proposed. Rather, inhibition occurs after metal insertion and results from poor or diminished product release. Possible explanations for the lack of product release are proposed herein.  相似文献   

9.
Ecosystems - Functional traits and species richness have been used to assess variation in ecological functions in multiple ecosystems. However, biodiversity effects on ecosystem functioning could...  相似文献   

10.
11.
Attention is important for effectively comparing incoming perceptual information with the contents of visual short-term memory (VSTM), such that any differences can be detected. However, how attentional mechanisms operate upon these comparison processes remains largely unknown. Here we investigate the underlying neural mechanisms by which attention modulates the comparisons between VSTM and perceptual representations using functional magnetic resonance imaging (fMRI). Participants performed a cued change detection task. Spatial cues were presented to orient their attention either to the location of an item in VSTM prior to its comparison (retro-cues), or simultaneously (simultaneous-cues) with the probe array. A no-cue condition was also included. When attention cannot be effectively deployed in advance (i.e. following the simultaneous-cues), we observed a distributed and extensive activation pattern in the prefrontal and parietal cortices in support of successful change detection. This was not the case when participants can deploy their attention in advance (i.e. following the retro-cues). The region-of-interest analyses confirmed that neural responses for successful change detection versus correct rejection in the visual and parietal regions were significantly different for simultaneous-cues compared to retro-cues. Importantly, we found enhanced functional connectivity between prefrontal and parietal cortices when detecting changes on the simultaneous-cue trials. Moreover, we demonstrated a close relationship between this functional connectivity and d′ scores. Together, our findings elucidate the attentional and neural mechanisms by which items held in VSTM are compared with incoming perceptual information.  相似文献   

12.

Background

Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only.

Methodology/Principal Findings

Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10–14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer.

Conclusions/Significance

Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with the predictions of the Reverse Hierarchy Theory of perceptual learning and suggest constraints on the use of perceptual-learning regimens during second language acquisition.  相似文献   

13.
Lactobacilli (Lactobacillales: Lactobacillaceae) are well known for their roles in food fermentation, as probiotics, and in human health, but they can also be dominant members of the microbiota of some species of Hymenoptera (ants, bees, and wasps). Honey bees and bumble bees associate with host-specific lactobacilli, and some evidence suggests that these lactobacilli are important for bee health. Social transmission helps maintain associations between these bees and their respective microbiota. To determine whether lactobacilli associated with social hymenopteran hosts are generally host specific, we gathered publicly available Lactobacillus 16S rRNA gene sequences, along with Lactobacillus sequences from 454 pyrosequencing surveys of six other hymenopteran species (three sweat bees and three ants). We determined the comparative secondary structural models of 16S rRNA, which allowed us to accurately align the entire 16S rRNA gene, including fast-evolving regions. BLAST searches and maximum-likelihood phylogenetic reconstructions confirmed that honey and bumble bees have host-specific Lactobacillus associates. Regardless of colony size or within-colony oral sharing of food (trophallaxis), sweat bees and ants associate with lactobacilli that are closely related to those found in vertebrate hosts or in diverse environments. Why honey and bumble bees associate with host-specific lactobacilli while other social Hymenoptera do not remains an open question. Lactobacilli are known to inhibit the growth of other microbes and can be beneficial whether they are coevolved with their host or are recruited by the host from environmental sources through mechanisms of partner choice.  相似文献   

14.

Background

Obese, non-acromegalic persons show lower growth hormone (GH) concentrations at fasting and reduced GH nadir during an oral glucose tolerance test (OGTT). However, this finding has never been studied with regard to whole-body insulin-sensitivity as a possible regulator.

Methods

In this retrospective analysis, non-acromegalic (NonACRO, n = 161) and acromegalic (ACRO, n = 35), non-diabetic subjects were subdivided into insulin-sensitive (IS) and –resistant (IR) groups according to the Clamp-like Index (CLIX)-threshold of 5 mg·kg−1·min−1 from the OGTT.

Results

Non-acromegalic IS (CLIX: 8.8±0.4 mg·kg−1·min−1) persons with similar age and sex distribution, but lower (p<0.001) body-mass-index (BMI = 25±0 kg/m2, 84% females, 56±1 years) had 59% and 70%, respectively, higher (p<0.03) fasting GH and OGTT GH area under the curve concentrations than IR (CLIX: 3.5±0.1 mg·kg−1·min−1, p<0.001) subjects (BMI = 29±1 kg/m2, 73% females, 58±1 years). When comparing on average overweight non-acromegalic IS and IR with similar anthropometry (IS: BMI: 27±0 kg/m2, 82% females, 58±2 years; IR: BMI: 27±0 kg/m2, 71% females, 60±1 years), but different CLIX (IS: 8.7±0.9 vs. IR: 3.8±0.1 mg·kg−1·min−1, p<0.001), the results remained almost the same. In addition, when adjusted for OGTT-mediated glucose rise, GH fall was less pronounced in IR. In contrast, in acromegalic subjects, no difference was found between IS and IR patients with regard to fasting and post-glucose-load GH concentrations.

Conclusions

Circulating GH concentrations at fasting and during the OGTT are lower in non-acromegalic insulin-resistant subjects. This study seems the first to demonstrate that insulin sensitivity rather than body-mass modulates fasting and post-glucose-load GH concentrations in non-diabetic non–acromegalic subjects.  相似文献   

15.
16.
17.
RNA folding occurs via a series of transitions between metastable intermediate states for Mg2+ concentrations below those needed to fold the native structure. In general, these folding intermediates are considerably less compact than their respective native states. Our previous work demonstrates that the major equilibrium intermediate of the 154-residue specificity domain (S-domain) of the Bacillus subtilis RNase P RNA is more extended than its native structure. We now investigate two models with falsifiable predictions regarding the origins of the extended intermediate structures in the S-domains of the B. subtilis and the Escherichia coli RNase P RNA that belong to different classes of P RNA and have distinct native structures. The first model explores the contribution of electrostatic repulsion, while the second model probes specific interactions in the core of the folding intermediate. Using small-angle X-ray scattering and Langevin dynamics simulations, we show that electrostatics plays only a minor role, whereas specific interactions largely account for the extended nature of the intermediate. Structural contacts in the core, including a nonnative base pair, help to stabilize the intermediate conformation. We conclude that RNA folding intermediates adopt extended conformations due to short-range, nonnative interactions rather than generic electrostatic repulsion of helical domains. These principles apply to other ribozymes and riboswitches that undergo functionally relevant conformational changes.  相似文献   

18.
In this research, the effect of different SA concentrations (0, 0.5, 1.0, 1.5, and 2.0 mM) on biological and grain yield as well as Na+, K+, Cl?, Ca2+, and Mg2+ distribution and accumulation in barley plants was examined under nonsaline (2 dS m?1) and saline (12 dS m?1) conditions in a three-year field study (2012–2015 growing seasons). Storage factor (SF) was defined as the concentration of an ion in the root, as a proportion of total uptake of that ion, to quantify ion partitioning between root and shoot. Salt stress decreased SF for K+, Ca2+, and Mg2+ and enhanced it for Na+ and Cl?, which led to reduce grain and biological yield. Nonetheless, foliar-applied SA in varying concentrations could lower some of these adverse effects on ion transport and accumulation. At the 2nd and 3rd years, unfavorable climatic conditions such as less precipitation and higher temperature intensified salt stress and decreased the alleviating impact of SA. Foliar application of SA at higher levels increased SF for Na+ and Cl? ions and decreased that for K+ indicating that SA helped barley plants keep more Na+ and Cl? and less K+ ions in the root system, which suggested the probable role of SA in altering ion transport within the plant in favor of salt stress tolerance. SF was found to be more correlated with grain yield under both nonsaline and saline conditions. Overall, SF might be considered as a potential criterion for salt tolerance in barley plants.  相似文献   

19.
20.
Much evidence from laboratory experiments and theoretical studies show that plasticity of clonal growth traits like lateral spread provides advantage in heterogeneous conditions. However, few tests of whether species with plastic clonal growth have an advantage over non-plastic species in natural conditions exist. I analyzed whether spacer length (i.e., length of a stolon or a rhizome branch between two ramets) and the variation of it (as a surrogate to its plasticity) relate to species presence and abundance in open meadow, wooded meadow and forest habitats with varying environmental conditions at Laelatu wooded meadow, Estonia. In fertilized, compared to unfertilized conditions, a weak and non-conclusive advantage of both long spacers and high variability of spacer length was detected. Abandonment in open meadows lead to a prevalence of species with shorter spacers, while on abandoned wooded meadows the species with longer spacers dominated. There was no difference in variability of spacer length between managed and abandoned meadows. In more heterogeneous forest habitats high variability of spacer length was more common, but the effect of lengthy spacers was more pronounced. The results suggest that while the variability of spacer length indeed corresponds with larger abundance in some conditions, the actual length of spacers has a more pronounced relationship with abundance of plants in natural vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号