首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated the involvement of phytochrome B in the early-flowering response of Arabidopsis thaliana L. seedlings to low red:far-red (R/FR) ratio light conditions. The phytochrome B-deficient hy3 (phyB) mutant is early flowering, and in this regard it resembles the shade-avoidance phenotype of its isogenic wild type. Seedlings carrying the hy2 mutation, resulting in a deficiency of phytochrome chromophore and hence of active phytochromes, also flower earlier than wild-type plants. Whereas hy3 or hy2 seedlings show only a slight acceleration of flowering in response to low R/FR ratio, seedlings that are doubly homozygous for both mutations flower earlier than seedlings carrying either phytochrome-related mutation alone. This additive effect clearly indicates the involvement of one or more phytochrome species in addition to phytochrome B in the flowering response as well as indicating the presence of some functional phytochrome B in hy2 seedlings. Seedlings that are homozygous for the hy3 mutation and one of the fca, fwa, or co late-flowering mutations display a pronounced early-flowering response to low R/FR ratio. A similar response to low R/FR ratio is displayed by seedlings doubly homozygous for the hy2 mutation and any one of the late-flowering mutations. Thus, placing the hy3 or hy2 mutations into a late-flowering background has the effect of uncovering a flowering response to low R/FR ratio. Seedlings that are triply homozygous for the hy3, hy2 mutations and a late-flowering mutation flower earlier than the double mutants and do not respond to low R/FR ratio. Thus, the observed flowering responses to low R/FR ratio in phytochrome B-deficient mutants can be attributed to the action of at least one other phytochrome species.  相似文献   

2.
3.
4.
When seedlings of Cuscuta japonica were grown with Vigna radiata(the host plant) in a flower pot for 6 d under white light andthen irradiated with far-red or blue light (ca. 6 µmolphotons m–2 s–1), the seedlings parasitized V. radiata.However, no parasitism of the seedlings was observed under redor white light or in darkness. The parasitic behavior of seedlingsof C. japonica was observed even if an acrylic rod was usedas a substitute for the host plant. Upon incubation under far-redlight, the seedling twined tightly around the rod and developedhaustoria towards it. Haustoria also developed when apical andsubapical regions of seedlings were held between two glass platesthat were about 0.7 mm apart and were irradiated with far-redlight. However, no haustoria were induced by either the holdor irradiation alone. These results indicate that parasitismof Cuscuta japonica is controlled by the cooperative effectsof two physical signals, far-red light and appropriate tactilepressure. Our findings suggest that parasitism by the genusCuscuta involves a novel strategy. (Received April 10, 1996; Accepted August 21, 1996)  相似文献   

5.
FtsZ1 and FtsZ2 are phylogenetically distinct families of FtsZ in plants that co-localize to mid-plastid rings and facilitate division of chloroplasts. In plants, altered levels of either FtsZ1 or FtsZ2 cause dose-dependent defects in chloroplast division; thus, studies on the functional relationship between FtsZgenes require careful manipulation of FtsZ levels in vivo. To define the functional relationship between the two FtsZ2 genes in Arabidopsis thaliana, FtsZ2-1 and FtsZ2-2, we expressed FtsZ2-1 in an ftsZ2-2 null mutant, and vice versa, and determined whether the chloroplast division defects were rescued in plants expressing different total levels of FtsZ2. Full rescue was observed when either the FtsZ2-1 or FtsZ2-2 level approximated total FtsZ2 levels in wild-type (WT). Additionally, FtsZ2-2 interacts with ARC6, as shown previously for FtsZ2- 1. These data indicate that FtsZ2-1 and FtsZ2-2 are functionally redundant for chloroplast division in Arabidopsis. To rigorously validate the requirement of each FtsZ family for chloroplast division, we replaced FtsZ1 with FtsZ2 in vivo, and vice versa, while maintaining the FtsZ level in the transgenic plants equal to that of the total level in WT. Chloroplast division defects were not rescued, demonstrating conclusively that FtsZ1 and FtsZ2 are non-redundant for maintenance of WT chloroplast numbers. Finally, we generated ftsZtriple null mutants and show that plants completely devoid of FtsZ protein are viable and fertile. As plastids are presumably essential organelles, these findings suggest that an FtsZ-independent mode of plastid partitioning may occur in higher plants.  相似文献   

6.
Growth responses of hypocotyls of Brassica oleracea L. var. capitata caused by diurnal irradiation of various duration (0.5 h/d up to continuous irradiation) and various irradiance (0.3–1.5 W m?2) with red and far-red light from sources characterized below can be described by the equation: (W= relative effect, I= irradiance, t1= irradiation time per day, Ws= constant dependent on material and wavelength, α, B and ts, = constants dependent on wavelength.) On the basis of that equation a possible connection between longtime and short-time irradiation responses is discussed.  相似文献   

7.
8.
9.
10.
Systemic acquired resistance (SAR) develops in response to local microbial leaf inoculation and renders the whole plant more resistant to subsequent pathogen infection. Accumulation of salicylic acid (SA) in noninfected plant parts is required for SAR, and methyl salicylate (MeSA) and jasmonate (JA) are proposed to have critical roles during SAR long-distance signaling from inoculated to distant leaves. Here, we address the significance of MeSA and JA during SAR development in Arabidopsis thaliana. MeSA production increases in leaves inoculated with the SAR-inducing bacterial pathogen Pseudomonas syringae; however, most MeSA is emitted into the atmosphere, and only small amounts are retained. We show that in several Arabidopsis defense mutants, the abilities to produce MeSA and to establish SAR do not coincide. T-DNA insertion lines defective in expression of a pathogen-responsive SA methyltransferase gene are completely devoid of induced MeSA production but increase systemic SA levels and develop SAR upon local P. syringae inoculation. Therefore, MeSA is dispensable for SAR in Arabidopsis, and SA accumulation in distant leaves appears to occur by de novo synthesis via isochorismate synthase. We show that MeSA production induced by P. syringae depends on the JA pathway but that JA biosynthesis or downstream signaling is not required for SAR. In compatible interactions, MeSA production depends on the P. syringae virulence factor coronatine, suggesting that the phytopathogen uses coronatine-mediated volatilization of MeSA from leaves to attenuate the SA-based defense pathway.  相似文献   

11.
Plants of water hyacinth (Eichhornia crassipes) were grown undertwo red/far-red ratios (Z) to investigate the effects on morphologyand growth of the light quality component of canopy shade. Experimentswere conducted in diffuse sunlight in the presence or absenceof far-red radiation. Under low Z conditions, fewer new ramets were produced and theirstolons were shorter. The number of leaves per ramet was unchanged,but petiole length and blade area were increased. This changein biomass partitioning resulted in a lower investment in themain resource-acquiring organs (leaf blades and roots). Thelower allocation of biomass to the leaf blades was compensatedfor by a higher net assimilation rate, such that relative growthrate remained unchanged. Key words: Biomass partitioning, Eichhornia crassipes, growth, morphogenesis, red: far-red ratio  相似文献   

12.
13.
14.
The unknown protein family 0224 (UPF0224) includes three members that are expressed in germ-line cells in mice: Gtsf1, Gtsf1l, and BC048502 (Gtsf2). These genes produce proteins with two repeats of the CHHC Zn-finger domain, a predicted RNA-binding motif, in the N terminus. We previously reported that Gtsf1 is essential for spermatogenesis and retrotransposon suppression. In this study, we investigated the expression patterns and functions of Gtsf1l and Gtsf2. Interestingly, Gtsf1l and Gtsf2 were found to be sequentially but not simultaneously expressed in gonocytes and spermatids. Pull-down experiments showed that both GTSF1L and GTSF2 can interact with PIWI-protein complexes. Nevertheless, knocking out Gtsf1, Gtsf2, or both did not cause defects in spermatogenesis or retrotransposon suppression in mice.  相似文献   

15.
拟南芥CBF1与植物对低温和干旱的抗性   总被引:2,自引:0,他引:2  
刘粉霞  谭振波  朱建清  邓晓建 《遗传》2004,26(3):394-398
对冷驯化过程中基因表达差异的认识,使抗冻基因(COR)的克隆及其功能的分析成为研究冷驯化过程的主要目标。在拟南芥和其他抗冻植物中,分离了许多COR基因,这些基因对植物抗冻起着非常重要的作用。在拟南芥COR调控的研究中,发现了CBF转录因子的基因家族,其中CBF1能调控一组COR基因的表达。近年来,在冷敏植物如番茄和玉米中也发现了CBF类似基因,拟南芥CBF1基因在转基因番茄中的过量表达提高了植株的抗寒和抗旱性。这一研究结果展示了拟南芥CBF1类似基因的应用可能为冷敏植物抗寒和抗旱性的品种改良提供一条新的途径。  相似文献   

16.
Structure-specific endonucleases act to repair potentially toxic structures produced by recombination and DNA replication, ensuring proper segregation of the genetic material to daughter cells during mitosis and meiosis. Arabidopsis thaliana has two putative homologs of the resolvase (structure-specific endonuclease): GEN1/Yen1. Knockout of resolvase genes GEN1 and SEND1, individually or together, has no detectable effect on growth, fertility, or sensitivity to DNA damage. However, combined absence of the endonucleases MUS81 and SEND1 results in severe developmental defects, spontaneous cell death, and genome instability. A similar effect is not seen in mus81 gen1 plants, which develop normally and are fertile. Absence of RAD51 does not rescue mus81 send1, pointing to roles of these proteins in DNA replication rather than DNA break repair. The enrichment of S-phase histone γ-H2AX foci and a striking loss of telomeric DNA in mus81 send1 further support this interpretation. SEND1 has at most a minor role in resolution of the Holliday junction but acts as an essential backup to MUS81 for resolution of toxic replication structures to ensure genome stability and to maintain telomere integrity.  相似文献   

17.
18.
19.
There is increasing evidence that melanopsin-expressing ganglion cells (ipRGCs) are altered in retinal pathologies. Using a streptozotocin-induced (STZ) model of diabetes, we investigated the impact of diabetic retinopathy on non-visual functions by analyzing ipRGCs morphology and light-induced c-Fos and Period 1–2 clock genes in the central clock (SCN). The ability of STZ-diabetic mice to entrain to light was challenged by exposure animals to 1) successive light/dark (LD) cycle of decreasing or increasing light intensities during the light phase and 2) 6-h advance of the LD cycle. Our results show that diabetes induces morphological changes of ipRGCs, including soma swelling and dendritic varicosities, with no reduction in their total number, associated with decreased c-Fos and clock genes induction by light in the SCN at 12 weeks post-onset of diabetes. In addition, STZ-diabetic mice exhibited a reduction of overall locomotor activity, a decrease of circadian sensitivity to light at low intensities, and a delay in the time to re-entrain after a phase advance of the LD cycle. These novel findings demonstrate that diabetes alters clock genes and behavioral responses of the circadian timing system to light and suggest that diabetic patients may show an increased propensity for circadian disturbances, in particular when they are exposed to chronobiological challenges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号