首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
HLA-G is a nonclassical class I MHC molecule of unknown function expressed on human trophoblast. The level of polymorphism at the HLA-G locus is of considerable importance, since the paternally inherited gene product is exposed to the maternal immune system during pregnancy. However, previous studies of HLA-G polymorphism using genomic DNA samples have produced conflicting results. Our aim was to investigate polymorphism in trophoblast HLA-G mRNA from pregnancies in ten Caucasian and twelve Afro-Caribbean women by RT-PCR. A similar PCR protocol was also applied to umbilical cord blood genomic DNA from two Caucasian and two Afro-Caribbean neonates. Caucasian cDNA yielded only two different sequences: G*01011, and one containing a previously reported synonymous substitution. Afro-Caribbean samples yielded these sequences as well as one previously reported conservative (leucine-to-isoleucine) substitution. PCR amplification from genomic DNA samples from both populations using previously published primer pairs generated sequences containing multiple substitutions, many of which were nonsynonymous. More than two sequences were produced from genomic DNA from each individual. In contrast, amplification from the same genomic DNA using new primers complementary to exons of the HLA-G gene yielded the same few sequences generated from cDNA. These results suggest that polymorphism at the HLA-G locus is extremely limited in Caucasian and Afro-Caribbean populations. This suggests that spurious polymorphism has been reported in African Americans due to the use of intron-complementary PCR primers on genomic DNA samples. The monomorphic nature of HLA-G may allow trophoblast to carry out the immunological functions of class I-bearing tissues without compromising successful pregnancy.  相似文献   

5.
Pregnancy in mammals featuring hemochorial placentation introduces a major conflict with the mother's immune system, which is dedicated to repelling invaders bearing foreign DNA and RNA. Numerous and highly sophisticated strategies for preventing mothers from rejecting their genetically different fetus(es) have now been identified. These involve production of novel soluble and membrane-bound molecules by uterine and placental cells. In humans, the placenta-derived molecules include glycoproteins derived from the HLA class Ib gene, HLA-G. Isoforms of HLA-G saturate the maternal-fetal interface and circulate in mothers throughout pregnancy. Uteroplacental immune privilege for the fetus and its associated tissues is believed to result when immune cells encounter HLA-G. Unequivocally demonstration of this concept requires experiments in animal models. Both the monkey and the baboon express molecules that are similar but not identical to HLA-G, and may comprise suitable animal models for establishing a central role for these proteins in pregnancy.  相似文献   

6.
人类白细胞抗原(human leucocyte antigen,HLA)复合体是人体中基因多态性最高的基因复合体,其多态性与疾病遗传易感性显著相关。人类白细胞抗原-F(human leucocyte antigen-F,HLA-F)属于非经典HLA I类分子中的一员,与HLA-E、-G在结构上十分相似,具有有限的多态性。近年来多数学者聚焦于HLA-F基因转录及分子表达调控、HLA-F表达与临床相关性及HLA-F抗体研制,且取得了重要成果。就HLA-F的研究进展作一综述。  相似文献   

7.
Human NK cells adhere to and lyse porcine endothelial cells (pEC) and therefore may contribute to the cell-mediated rejection of vascularized pig-to-human xenografts. Since MHC class I molecules inhibit the cytotoxic activity of NK cells, the expression of HLA genes in pEC has been proposed as a potential solution to overcome NK cell-mediated xenogeneic cytotoxicity. HLA-G, a minimally polymorphic HLA class I molecule that can inhibit a wide range of NK cells, is an especially attractive candidate for this purpose. In this study we tested whether the expression of HLA-G on pEC inhibits the molecular mechanisms that lead to adhesion of human NK cells to pEC and subsequent xenogeneic NK cytotoxicity. To this end two immortalized pEC lines (2A2 and PED) were stably transfected with HLA-G1. Rolling adhesion of activated human NK cells to pEC monolayers and xenogeneic cytotoxicity against pEC mediated by polyclonal human NK lines as well as NK clones were inhibited by the expression of HLA-G. The adhesion was partially reversed by masking HLA-G on pEC with anti-HLA mAbs or by masking the HLA-G-specific inhibitory receptor ILT-2 on NK cells with the mAb HP-F1. The inhibition of NK cytotoxicity by HLA-G was only partially mediated by ILT-2, indicating a role for other unknown NK receptors. In conclusion, transgenic expression of HLA-G may be useful to prevent human NK cell responses to porcine xenografts, but is probably not sufficient on its own. Moreover, the blocking of rolling adhesion by HLA-G provides evidence for a novel biological function of HLA molecules.  相似文献   

8.
The expression and function of the human major histocompatibility complex (MHC) class Ia genes, human leukocyte antigen (HLA)-A, -B, and -C, is well-established; they are expressed in most nucleated cells and present endogenous peptides to CD8+ T cells. However, MHC class Ib genes are poorly characterized and have unknown functions. In humans, the best-characterized class Ib gene is HLA-G. This gene has a restricted tissue expression of the mRNA and a unique pattern of protein expression; it is expressed mainly in the extravillous cytotrophoblast cells in the placenta. The function of HLA-G is not clear, but its presence at the maternal-fetal interface suggests a role in protection of the semiallogeneic fetus. Whereas functional studies using in vitro models and transgenic mice provide useful insights regarding the potential function of this molecule, in vivo studies cannot be performed in humans. Nonhuman primates that are closely related to humans phylogenetically contain homologues of HLA-G. The MHC-G loci in nonhuman primates appear to have diverged from the human HLA-G. However, in the rhesus monkey (Macaca mulatta) and olive baboon (Papio anubis), a novel class Ia-related locus has been described. This gene encodes glycoproteins with characteristics that resemble those of HLA-G, including restricted tissue distribution, alternative splicing of mRNA, truncated cytoplasmic domain, and limited polymorphism. Thus, this molecule may be the functional homologue of HLA-G, and these two species may comprise appropriate models for elucidating the function of HLA-G.  相似文献   

9.
10.
Human NK cells contribute a significant role to host defense as well as xenogeneic cytotoxicity. Previous studies using human 721.221 cell line have shown that peptides derived from the leader sequence of the HLA-G binds and up-regulates the surface expression of HLA-E molecules, which was considered to consequently provide negative signals to human NK cells. However, the direct role of HLA-G in inhibiting human NK cells remains controversial. In this study, we showed that the expression of HLA-G or HLA-E in porcine endothelial cells directly protected sensitive porcine cells from human NK cell-mediated xenogeneic cytotoxicity. Ab blocking assays using F(ab')2 of the HLA class I-specific mAb PA2.6 indicated that the protection was directly mediated by the expression of HLA-G and HLA-E on the porcine cells. The HLA-E-mediated protection was blocked by anti-human CD94 Ab. In addition, the engagement of HLA-E lead to the phosphorylation of the CD94/NKG2 complex and the recruitment of SH2 domain-containing protein phosphatase 1 (SHP-1) to the complex. Therefore, HLA-E protected porcine cells from xenoreactive human NK cells through a CD94/NKG2-dependent pathway. In contrast, HLA-G inhibited human NK cells in the absence of CD94/NKG2 phosphorylation or SHP-1 recruitment, and the inhibition was not blocked by anti-CD94 Ab. Therefore, HLA-G protected porcine cells from human NK cells through a CD94/NKG2-independent pathway. These results demonstrated that both HLA-E and HLA-G could directly inhibit human NK cells in the absence of other endogenous HLA class I molecules. These results also have practical implications in preventing xenograft rejection mediated by human NK cells.  相似文献   

11.
HLA-G is a nonclassical MHC molecule with highly limited tissue distribution that has been attributed chiefly immune regulatory functions. Glioblastoma is paradigmatic for the capability of human cancers to paralyze the immune system. To delineate the potential role of HLA-G in glioblastoma immunobiology, expression patterns and functional relevance of this MHC class Ib molecule were investigated in glioma cells and brain tissues. HLA-G mRNA expression was detected in six of 12 glioma cell lines in the absence of IFN-gamma and in 10 of 12 cell lines in the presence of IFN-gamma. HLA-G protein was detected in four of 12 cell lines in the absence of IFN-gamma and in eight of 12 cell lines in the presence of IFN-gamma. Immunohistochemical analysis of human brain tumors revealed expression of HLA-G in four of five tissue samples. Functional studies on the role of HLA-G in glioma cells were conducted with alloreactive PBMCs, NK cells, and T cell subpopulations. Expression of membrane-bound HLA-G1 and soluble HLA-G5 inhibited alloreactive and Ag-specific immune responses. Gene transfer of HLA-G1 or HLA-G5 into HLA-G-negative glioma cells (U87MG) rendered cells highly resistant to direct alloreactive lysis, inhibited the alloproliferative response, and prevented efficient priming of cytotoxic T cells. The inhibitory effects of HLA-G were directed against CD8 and CD4 T cells, but appeared to be NK cell independent. Interestingly, few HLA-G-positive cells within a population of HLA-G-negative tumor cells exerted significant immune inhibitory effects. We conclude that the aberrant expression of HLA-G may contribute to immune escape in human glioblastoma.  相似文献   

12.
The non-classical HLA class I antigen HLA-G contributes to immune escape mechanisms in glioblastoma multiforme (GBM). We have previously shown that IL-1β–HIF-1α axis connects inflammatory and oncogenic pathways in GBM. In this study, we investigated the role of IL-1β induced inflammation in regulating HLA-G expression. IL-1β increased HLA-G and Toll like receptor 4 (TLR4) expression in a HIF-1α dependent manner. Inhibition of TLR4 signaling abrogated IL-1β induced HLA-G. IL-1β increased HMGB1 expression and its interaction with TLR4. Inhibition of HMGB1 inhibited TLR4 and vice versa suggesting the existence of HMGB1–TLR4 axis in glioma cells. Interestingly, HMGB1 inhibition prevented IL-1β induced HLA-G expression. Elevated levels of HMGB1 and β-defensin 3 were observed in GBM tumors. Importantly, β-defensin-3 prevented IL-1β induced HLA-G, TLR4, HMGB1 expression and release of pro-inflammatory mediators. Our studies indicate that β-defensin-3 abrogates IL-1β induced HLA-G expression by negatively affecting key molecules associated with its regulation.  相似文献   

13.
14.
15.
Expression of the nonclassical HLA class I antigen, HLA-G, is associated with immune tolerance in view of its role in maintaining the fetus in utero, allowing tumor escape, and favoring graft acceptance. Expressed on invasive trophoblast cells, HLA-G molecules bind inhibitory receptors on maternal T lymphocytes and NK cells, thereby blocking their cytolytic activities and protecting the fetus from maternal immune system attack. The HLA-G gene consists of 15 alleles, including a null allele, HLA-G*0105N. HLA-G*0105N presents a single base deletion, preventing translation of both membrane-bound (HLA-G1) and full-length soluble isoforms (HLA-G5) as well as of the spliced HLA-G4 isoform. The identification of healthy subjects homozygous for this HLA-G null allele suggests that the HLA-G*0105N allele may generate other HLA-G isoforms, such as membrane-bound HLA-G2 and -G3 and the soluble HLA-G6 and -G7 proteins, which may substitute for HLA-G1 and -G5, thus assuming the immune tolerogeneic function of HLA-G. To investigate this point, we cloned genomic HLA-G*0105N DNA and transfected it into an HLA-class I-positive human cell line. The results obtained indicated that HLA-G proteins were indeed present in HLA-G*0105N-transfected cells and were able to protect against NK cell lysis. These findings emphasize the role of the other HLA-G isoforms as immune tolerogeneic molecules that may also contribute to maternal tolerance of the semiallogenic fetus as well as tumor escape and other types of allogeneic tissue acceptance.  相似文献   

16.
人类白细胞抗原G(human leukocyte antigen,HLA-G)属于非经典HLA-I类分子,在多种肿瘤细胞上均有表达。从结构上可以将HLA-G分为7种亚型:膜结合型HLA-G1-HLA-G4和可溶型HLA-G5-HLA-G7。研究表明,HLA-G1和HLA-G5具有明确的生物学活性也是研究较为深入的两种亚型,他们可以与T淋巴细胞、B淋巴细胞和NK细胞表面的ILT2/CD85j/LILRB1,ILT4/CD85d/LILRB2,KIR2DL4/CD158d受体结合而发挥免疫抑制功能。目前,HLA-G分子可以在肝癌、肾癌、肺癌、胃癌、食道癌、鼻咽癌、卵巢癌、乳腺癌、宫颈癌、直肠癌和血液肿瘤中表达。本文从HLA-G分子的结构和功能出发,综述了HLA-G分子在上述肿瘤中表达的情况,旨在分析HLA-G在各种肿瘤组织中表达的特点以及临床意义,为临床早期诊断和治疗肿瘤提供参考。  相似文献   

17.
HLA-G promotes immune tolerance   总被引:2,自引:0,他引:2  
HLA-G is a non-classical major histocompatibility complex class I molecule that differs from the classical HLA-A, -B and -C molecules by (i) alternative splicing of mRNAs encoding for at least four membrane-bound and two soluble HLA-G isoforms, (ii) a limited polymorphism, and (iii) a tissue-restricted distribution. Studies over the past few years have elucidated the function of HLA-G demonstrating inhibition of both NK cell- and T cell-mediated cytolysis. Furthermore, aside from its expression during pregnancy, we have shown that HLA-G is also expressed in solid tumor cells (i.e. human melanoma cell lines and ex vivo melanoma biopsies). Here we present a review of the current state of knowledge of the immunotolerant functions of HLA-G and their implications in materno-fetal tolerance and tumor immunosurveillance.  相似文献   

18.
Nonclassical human leukocyte antigen (HLA) class I molecule HLA-G and indoleamine 2,3 dioxygenase (INDO) in humans and mice, respectively, have been shown to play crucial immunosuppressive roles in fetal-maternal tolerance. HLA-G inhibits natural killer and T cell function by high-affinity interaction with inhibitory receptors, and INDO acts by depleting the surrounding microenvironment of the essential amino acid tryptophan, thus inhibiting T cell proliferation. We investigated whether HLA-G expression and INDO function were linked. Working with antigen-presenting cell (APC) lines and monocytes, we found that functional inhibition of INDO by 1-methyl-tryptophan induced cell surface expression of HLA-G1 by HLA-G1-negative APCs that were originally cell-surface negative, and that in reverse, the functional boost of INDO by high concentrations of tryptophan induced a complete loss of HLA-G1 cell surface expression by APCs that were originally cell-surface HLA-G1-positive. This mechanism was shown to be posttranslational because HLA-G protein cell contents remained unaffected by the treatments used. Furthermore, HLA-G cell surface expression regulation by INDO seems to relate to INDO function, but not to tryptophan catabolism itself. Potential implications in fetal-maternal tolerance are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号