首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium is a highly toxic environmental pollutant that has been classified as a human carcinogen. Toxicological responses to cadmium exposure include respiratory diseases, neurological disorders and kidney damage. In the present study, we have characterized the effect of cadmium on the accumulation of the small heat shock protein (HSP), HSP30, in Xenopus laevis A6 kidney epithelial cells. Incubation of A6 cells with cadmium chloride induced the accumulation of HSP30 protein and hsp30 mRNA. While HSP70 protein and hsp70 mRNA accumulation were also induced, the relative levels of actin remained relatively unaffected. Elevated levels of HSP30 were detected in cells undergoing prolonged exposure of cells to cadmium chloride or in cells recovering from cadmium chloride treatment. Immunocytochemical analysis of cadmium chloride-treated A6 cells revealed HSP30 accumulation primarily in the cytoplasm in a punctate pattern supplemented with larger HSP30 staining structures. Also, HSP30 co-localized with the F-actin cytoskeleton at higher cadmium chloride concentrations. The combination of mild heat shock temperatures plus cadmium chloride concentrations employed in this study resulted in a synergistic accumulation of HSP30 protein and hsp30 mRNA. Finally, in contrast to heat shock, prior exposure of Xenopus A6 cells to cadmium chloride treatment, sufficient to induce the accumulation of HSPs, did not protect the cells against a subsequent thermal challenge.  相似文献   

2.
HSP47 is an endoplasmic reticulum (ER)-resident molecular chaperone involved in collagen production. This study examined the stress-induced pattern of hsp47 gene expression in Xenopus cultured cells and embryos. Sequence analysis revealed that protein encoded by the hsp47 cDNA exhibited 70-77% identity with fish, avian and mammalian HSP47. In A6 kidney epithelial cells hsp47 mRNA and HSP47 were present constitutively and inducible by heat shock but not ER stressors including tunicamycin and A23187, both of which enhanced BiP mRNA. Furthermore A23187 treatment inhibited constitutive accumulation of hsp47 mRNA and retarded heat-induced accumulation of hsp47 and hsp70 mRNA. Interestingly, hsp47 gene expression but not hsp70 or BiP mRNA accumulation was enhanced by treatment with a procollagen-specific stressor, beta-aminopropionitrile. In Xenopus embryos hsp47 mRNA was present constitutively throughout development. In tailbud embryos hsp47 mRNA was enriched in tissues associated with collagen production including notochord, somites and head region. Heat shock-induced accumulation of hsp47 mRNA was enhanced primarily in embryonic tissues already exhibiting hsp47 mRNA accumulation. These studies suggest that the pattern of Xenopus hsp47 gene expression is similar to hsp70 in response to heat shock but also displays unique features including a response to a procollagen-specific stressor and preferential expression in collagen-containing tissues.  相似文献   

3.
4.
BiP/GRP78 is an essential member of the HSP70 family that resides in the lumen of the endoplasmic reticulum. In yeast, BiP/GRP78 is encoded by the KAR2 gene. A temperature sensitive mutation was isolated in KAR2 and found to cause a rapid block in protein secretion. Secretory precursors of a number of proteins (invertase, carboxypeptidase Y, alpha-factor, and BiP) accumulated that were characteristic of a block in translocation into the lumen of the ER. Protease protection experiments confirmed that the precursors accumulated on the cytoplasmic side of the ER membrane. Moreover, depletion of wild-type KAR2 protein also resulted in a block in translocation of secretory proteins. These results implicate BiP/GRP78 function in the continued translocation of proteins into the lumen of the ER.  相似文献   

5.
Many cells and organisms are rendered transiently resistant to lethal heat shock by short exposure to sublethal temperatures. This induced thermotolerance is thought to be related to increased amounts of heat shock proteins (HSPs) which, as molecular chaperones, protect cells from stress-induced damage. As part of a study on bivalve stress and thermotolerance, work was undertaken to examine the effects of sublethal heat shock on stress tolerance of juveniles of the northern bay scallop, Argopecten irradians irradians, in association with changes in the levels of cytoplasmic HSP70 and 40. Juvenile bay scallops heat-shocked at a sublethal temperature of 32 °C survived an otherwise lethal heat treatment at 35 °C for at least 7 days. As determined by ELISA, acquisition of induced thermotolerance closely paralleled HSP70 accumulation, whereas HSP40 accrual appeared less closely associated with thermotolerance. Quantification of scallop HSPs following lethal heat treatment, with or without conditioning, suggested a causal role for HSP70 in stress tolerance, with HSP40 contributing to a lesser, but significant extent. Overall, this study demonstrated that sublethal heat shock promotes survival of A. irradians irradians juveniles upon thermal stress and the results support the hypothesis that HSPs have a role in this induced thermotolerance. Exploitation of the induced thermotolerance response shows promise as a means to improve survival of bay scallops in commercial culture.  相似文献   

6.
Heat shock proteins (HSPs) are induced not only under heat stress conditions but also under other environmental stresses such as water stress. In plants, HSPs families are larger than those of other eukaryotes. In order to elucidate a possible connection between HSP expression and photosynthetic acclimation or conditioning, we conducted a water stress experiment in loblolly pine (Pinus taeda L.) seedlings involving progressive treatment consisting of one cycle of mild stress (?1 MPa) followed by two cycles of severe stress (?1.7 MPa). Net photosynthesis was measured at each stress level. Photosynthetic acclimation occurred in the progressive treatment after the first cycle, but not in the severe treatment, suggesting that a cycle of mild stress conditioned the trees to adapt to a more severe stress. Real time results indicated specific patterns in needles in the expression of HSP70, HSP90 and sHSP genes for each treatment, both at maximum stress and at recovery. We identified a pine homolog to GRP94 (ER resident HSP90) that was induced after rehydration coincident with acclimation. Further analysis of the promoter region of the pine GRP94 showed putative cis-elements associated with water stress and rehydration, corresponding to the expression pattern observed in our experiment.  相似文献   

7.
8.
Liver, a central organ responsible for the metabolism of carbohydrates, proteins, and lipoproteins, is exposed to various kinds of physiological, pathological, and environmental stresses. We hypothesized that blockage of proteasome degradation pathway induces heat shock protein (HSP) response and unfolded protein response in the liver cells. In this study, we have characterized cellular responses to proteasome inhibition in HepG2 cells, a well-differentiated human hepatoma cells. We found that proteasome inhibition induced differential response among cytosolic HSPs, that is, increased expression of HSP70, but no change in HSP40, HSC70, and HSP90. However, proteasome inhibition did not induce typical unfolded protein response as indicated by absence of stimulation of GRP78 and GRP94 proteins. Upon proteasome inhibition, inclusion bodies were accumulated, and ubiquitin-conjugated proteins appeared in insoluble fraction, together with HSP40, HSP70, HSC70, and HSP90. After proteasome inhibition, misfolded proteins were increased in the cytosol and in the ER compartment as evaluated by examining ubiquitin-conjugated proteins. However, essentially all ER-associated ubiquitin-conjugated proteins were located on the surface of the ER, which explains why proteasome inhibition does not induce unfolded protein response. In conclusion, proteasome inhibition induces differential HSP response, but not unfolded protein response in HepG2 cells. Our study also suggests that HSPs play important roles in directing proteasomal degradation and protein aggregate formation.  相似文献   

9.
In the present study, we examined the expression of the Rana catesbeiana small heat shock protein gene, hsp30, in an FT fibroblast cell line. Northern and western blot analyses revealed that hsp30 mRNA or HSP30 protein was not present constitutively but was strongly induced at a heat shock temperature of 35 degrees C. However, treatment of FT cells with sodium arsenite at concentrations that induced hsp gene expression in other amphibian systems caused cell death. Non-lethal concentrations of sodium arsenite (10 microM) induced only minimal accumulation of hsp30 mRNA or protein after 12 h. Immunocytochemical analyses employing laser scanning confocal microscopy detected the presence of heat-inducible HSP30, in a granular or punctate pattern. HSP30 was enriched in the nucleus with more diffuse localization in the cytoplasm. The nuclear localization of HSP30 was more prominent with continuous heat shock. These heat treatments did not alter FT cell shape or disrupt actin cytoskeletal organization. Also, HSP30 did not co-localize with the actin cytoskeleton.  相似文献   

10.
11.
Xu X  Gupta S  Hu W  McGrath BC  Cavener DR 《PloS one》2011,6(8):e23740

Background

The ER chaperone GRP78/BiP is a homolog of the Hsp70 family of heat shock proteins, yet GRP78/BiP is not induced by heat shock but instead by ER stress. However, previous studies had not considered more physiologically relevant temperature elevation associated with febrile hyperthermia. In this report we examine the response of GRP78/BiP and other components of the ER stress pathway in cells exposed to 40°C.

Methodology

AD293 cells were exposed to 43°C heat shock to confirm inhibition of the ER stress response genes. Five mammalian cell types, including AD293 cells, were then exposed to 40°C hyperthermia for various time periods and induction of the ER stress pathway was assessed.

Principal Findings

The inhibition of the ER stress pathway by heat shock (43°C) was confirmed. In contrast cells subjected to more mild temperature elevation (40°C) showed either a partial or full ER stress pathway induction as determined by downstream targets of the three arms of the ER stress pathway as well as a heat shock response. Cells deficient for Perk or Gcn2 exhibit great sensitivity to ER stress induction by hyperthermia.

Conclusions

The ER stress pathway is induced partially or fully as a consequence of hyperthermia in parallel with induction of Hsp70. These findings suggest that the ER and cytoplasm of cells contain parallel pathways to coordinately regulate adaptation to febrile hyperthermia associated with disease or infection.  相似文献   

12.
Stress of the endoplasmic reticulum (ER stress) is caused by the accumulation of misfolded proteins, which occurs in many neurodegenerative diseases. ER stress can lead to adaptive responses or apoptosis, both of which follow activation of the unfolded protein response (UPR). Heat shock proteins (HSP) support the folding and function of many proteins, and are important components of the ER stress response, but little is known about the role of one of the major large HSPs, HSP105. We identified several new partners of HSP105, including glycogen synthase kinase-3 (GSK3), a promoter of ER stress-induced apoptosis, and GRP78, a key component of the UPR. Knockdown of HSP105 did not alter UPR signaling after ER stress, but blocked caspase-3 activation after ER stress. In contrast, caspase-3 activation induced by genotoxic stress was unaffected by knockdown of HSP105, suggesting ER stress-specificity in the apoptotic action of HSP105. However, knockdown of HSP105 did not alter cell survival after ER stress, but instead diverted signaling to a caspase-3-independent cell death pathway, indicating that HSP105 is necessary for apoptotic signaling after UPR activation by ER stress. Thus, HSP105 appears to chaperone the responses to ER stress through its interactions with GRP78 and GSK3, and without HSP105 cell death following ER stress proceeds by a non-caspase-3-dependent process.  相似文献   

13.
C Lv  Y Hong  L Miao  C Li  G Xu  S Wei  B Wang  C Huang  B Jiao 《Cell death & disease》2013,4(12):e952
Chemotherapy remains the common therapeutic for patients with lung cancer. Novel, selective antitumor agents are pressingly needed. This study is the first to investigate a different, however, effective antitumor drug candidate Wentilactone A (WA) for its development as a novel agent. In NCI-H460 and NCI-H446 cell lines, WA triggered G2/M phase arrest and mitochondrial-related apoptosis, accompanying the accumulation of reactive oxygen species (ROS). It also induced activation of mitogen-activated protein kinase and p53 and increased expression of p21. When we pre-treated cells with ERK, JNK, p38, p53 inhibitor or NAC followed by WA treatment, only ERK and p53 inhibitors blocked WA-induced apoptosis and G2/M arrest. We further observed Ras (HRas, KRas and NRas) and Raf activation, and found that WA treatment increased HRas–Raf activation. Knockdown of HRas by using small interfering RNA (siRNA) abolished WA-induced apoptosis and G2/M arrest. HRas siRNA also halted Raf, ERK, p53 activation and p21 accumulation. Molecular docking analysis suggested that WA could bind to HRas-GTP, causing accumulation of Ras-GTP and excessive activation of Raf/ERK/p53-p21. The direct binding affinity was confirmed by surface plasmon resonance (SPR). In vivo, WA suppressed tumor growth without adverse toxicity and presented the same mechanism as that in vitro. Taken together, these findings suggest WA as a promising novel, potent and selective antitumor drug candidate for lung cancer.  相似文献   

14.
Three heat shock protein (HSP) genes (hsp70, hsc70, hsp90) were partially cloned from the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae), which are serious pests of the rice plant. Sequence comparisons at the deduced amino acid level showed that the three HSPs of planthoppers were most homologous to corresponding HSPs of dipteran and lepi‐dopteran species. Identities of both heat shock cognate 70 and HSP90 were higher than HSP70 in both species. Identity of the HSP70 between the two planthopper species was only 81%, a value much lower than seen among fly and moth groups. Effects of heat and cold shocks were demonstrated on expression of the three hsp genes in the two planthopper species. Heat shock (40 °C) upregulated the hsp90 level but did not change the hsc70 level in either the nymph and adult stages of either species. On the other hand, the hsp70 level was only upregulated in L. striatellus. This heat shock response was prompt and lasted only for 1 h after treatment. In contrast, cold shock at 4°C did not change the expression levels of any hsp in either species.  相似文献   

15.
Direct interaction of Chlamydiae with the endoplasmic reticulum (ER) is essential in intracellular productive infection. However, little is known about the interplay between Chlamydiae and the ER under cellular stress conditions that are observed in interferon gamma (IFN‐γ) induced chlamydial persistent infection. ER stress responses are centrally regulated by the unfolded protein response (UPR) under the control of the ER chaperone BiP/GRP78 to maintain cellular homeostasis. In this study, we could show that the ER directly contacted with productive and IFN‐γ‐induced persistent inclusions of Chlamydia pneumoniae (Cpn). BiP/GRP78 induction was observed in the early phase but not in the late phase of IFN‐γ‐induced persistent infection. Enhanced BiP/GRP78 expression in the early phase of IFN‐γ‐induced persistent Cpn infection was accompanied by phosphorylation of the eukaryotic initiation factor‐2α (eIF2α) and down‐regulation of the vesicle‐associated membrane protein‐associated protein B. Loss of BiP/GRP78 function resulted in enhanced phosphorylation of eIF2α and increased host cell apoptosis. In contrast, enhanced BiP/GRP78 expression in IFN‐γ‐induced persistent Cpn infection attenuated phosphorylation of eIF2α upon an exogenous ER stress inducer. In conclusion, ER‐related BiP/GRP78 plays a key role to restore cells from stress conditions that are observed in the early phase of IFN‐γ‐induced persistent infection.  相似文献   

16.
We isolated and sequenced Ha hsp 17.9, a DNA complementary (cDNA) of dry-seed stored mRNA that encodes a low-molecular-weight heat-shock protein (LMW HSP). Sequence analysis identified Ha hsp17.9, and the previously reported Ha hsp17.6, as cDNAs encoding proteins (HSP17.6 and HSP17.9) which belong to different families of cytoplasmic LMW HSPs. Using specific antibodies we observed differential expression of both proteins during zygotic embryogenesis under controlled environment, and a remarkable persistence of these LMW HSPs during germination. Immuno-blot analysis of HSP17.9 proteins in two-dimensional gels revealed that the polypeptides expressed in embryos were indistinguishable from LMW HSPs expressed in vegetative tissues in response to water deficit; but they appeared different from homologeous proteins expressed in response to thermal-stress. Tissue-print immunolocalization experiments showed that HSP17.9 and HSP17.6 were homogeneously distributed in every tissue of desiccation-tolerant dry seeds and young seedlings under non-stress conditions. These results demonstrate developmental regulation of specific, cytoplasmic, plant LMW HSPs, suggesting also their involvement in water-stress tolerance.  相似文献   

17.
Eukaryotic organisms respond to various stresses with the synthesis of heat shock proteins (HSPs). HSP110 is a large molecular mass HSP that is part of the HSP70/DnaK superfamily. In this study, we have examined, for the first time, the expression of the hsp110 gene in Xenopus laevis cultured cells and embryos. Sequence analysis revealed that the protein encoded by the hsp110 cDNA exhibited 74% identity with its counterparts in mammals and only 27-29% with members of the Xenopus HSP70 family. Hsp110 mRNA and/or protein was detected constitutively in A6 kidney epithelial cells and was inducible by heat shock, sodium arsenite, and cadmium chloride. However, treatment with ethanol or copper sulfate had no detectable effect on hsp110 mRNA levels. Similar results were obtained for hsp70 mRNA except that it was inducible with ethanol. In Xenopus embryos, hsp110 mRNA was present constitutively during development. Heat shock-inducible accumulation of hsp110 mRNA occurred only after the midblastula stage. Whole mount in situ hybridization analysis revealed that hsp110 mRNA accumulation in control and heat shocked embryos was enriched in selected tissues. These studies demonstrate that Xenopus hsp110 gene expression is constitutive and stress inducible in cultured cells and developmentally- and tissue specifically-regulated during early embryogenesis.  相似文献   

18.
Continuous exposure of a Xenopus laevis kidney epithelial cell line, A6, to either heat shock (33 degrees C) or sodium arsenite (50 microM) resulted in transient but markedly different temporal patterns of heat-shock protein (HSP) synthesis and HSP 70 and 30 mRNA accumulation. Heat-shock-induced synthesis of HSPs was detectable within 1 h and reached maximum levels by 2-3 h. While sodium arsenite induced the synthesis of some HSPs within 1 h, maximal HSP synthesis did not occur until 12 h. The pattern of HSP 70 and 30 mRNA accumulation was similar to the response observed at the protein level. During recovery from heat shock, a coordinate decline in HSPs and HSP 70 and 30 mRNA was observed. During recovery from sodium arsenite, a similar phenomenon occurred during the initial stages. However, after 6 h of recovery, HSP 70 mRNA levels persisted in contrast to the declining HSP 30 mRNA levels. Two-dimensional polyacrylamide gel electrophoresis revealed the presence of 5 HSPs in the HSP 70 family, of which two were constitutive, and 16 different stress-inducible proteins in the HSP 30 family. In conclusion, heat shock and sodium arsenite induce a similar set of HSPs but maximum synthesis of the HSP is temporally separated by 12-24 h.  相似文献   

19.
Heat shock protein (HSP) synthesis was studied in the Xenopus epithelial cell line A6 in response to heat and sodium arsenite, either singly or together. Temperatures of 33-35 degrees C consistently brought about the synthesis of HSPs at 87, 73, 70, 54, 31, and 30 kilodaltons (kDa), whereas sodium arsenite at 25-100 microM induced the synthesis of HSPs at 73 and 70 kDa. In cultures exposed to 10 microM sodium arsenite at 30 degrees C, HSP synthesis in the 68- to 73-kDa and 29- to 31-kDa regions was much greater than the HSP synthesis in response to each treatment individually. RNA dot blot analysis using homologous genomic subclones revealed that heat shock induced the accumulation of HSP 70 and 30 mRNAs. The sizes of the HSP 70 and 30 mRNAs determined by Northern hybridization were 2.7 and 1.5 kilobases, respectively. Sodium arsenite (10-100 microM) also induced the accumulation of both HSP 70 and 30 mRNAs. Finally, a mild heat shock (30 degrees C) plus a low concentration of sodium arsenite (10 microM) acted synergistically on HSP 70 and 30 mRNA accumulation in A6 cells. Thus sodium arsenite and heat act synergistically at the level of both HSP synthesis and HSP mRNA accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号