首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding a putative nitrilase was identified in the genome sequence of the photosynthetic cyanobacterium Synechocystis sp. strain PCC6803. The gene was amplified by PCR and cloned into an expression vector. The encoded protein was heterologously expressed in the native form and as a His-tagged protein in Escherichia coli, and the recombinant strains were shown to convert benzonitrile to benzoate. The active enzyme was purified to homogeneity and shown by gel filtration to consist probably of 10 subunits. The purified nitrilase converted various aromatic and aliphatic nitriles. The highest enzyme activity was observed with fumarodinitrile, but also some rather hydrophobic aromatic (e.g., naphthalenecarbonitrile), heterocyclic (e.g., indole-3-acetonitrile), or long-chain aliphatic (di-)nitriles (e.g., octanoic acid dinitrile) were converted with higher specific activities than benzonitrile. From aliphatic dinitriles with less than six carbon atoms only 1 mol of ammonia was released per mol of dinitrile, and thus presumably the corresponding cyanocarboxylic acids formed. The purified enzyme was active in the presence of a wide range of organic solvents and the turnover rates of dodecanoic acid nitrile and naphthalenecarbonitrile were increased in the presence of water-soluble and water-immiscible organic solvents.  相似文献   

2.
衣霉素属于核苷类抗生素,具有抑制蛋白质N-糖基化的活性,是潜在的药物先导化合物.罗中链霉菌(Streptomyces luozzhongensis)TRM49605是一株产衣霉素的链霉菌属(Streptomyces)的新物种.本研究旨在探索TRM49605中衣霉素生物合成基因簇的生物学功能,为新型药物开发提供理论依据....  相似文献   

3.
Nitrilases have attracted tremendous attention for the preparation of optically pure carboxylic acids. This article aims to address the production and utilization of a highly enantioselective nitrilase from Pseudomonas putida MTCC 5110 for the hydrolysis of racemic mandelonitrile to (R)-mandelic acid. The nitrilase gene from P. putida was cloned in pET 21b(+) and over-expressed as histidine-tagged protein in Escherichia coli. The histidine-tagged enzyme was purified from crude cell extracts of IPTG-induced cells of E. coli BL21 (DE3). Inducer replacement studies led to the identification of lactose as a suitable and cheap alternative to the costly IPTG. Effects of medium components, various physico-chemical, and process parameters (pH, temperature, aeration, and agitation) for the production of nitrilase by engineered E. coli were optimized and scaled up to a laboratory scale bioreactor (6.6 l). Finally, the recombinant E. coli whole-cells were utilized for the production of (R)-(−)-mandelic acid.  相似文献   

4.
Thioviridamide is a unique peptide antibiotic containing five thioamide bonds from Streptomyces olivoviridis. Draft genome sequencing revealed a gene (the tvaA gene) encoding the thioviridamide precursor peptide. The thioviridamide biosynthesis gene cluster was identified by heterologous production of thioviridamide in Streptomyces lividans.  相似文献   

5.
Enzymatic degradation of collagen produces peptides, the collagen peptides, which show a variety of bioactivities of industrial interest. Alicyclobacillus sendaiensis strain NTAP-1, a slightly thermophilic, acidophilic bacterium, extracellularly produces a novel thermostable collagenolytic activity, which exhibits its optimum at the acidic region (pH 3.9) and is potentially applicable to the efficient production of such peptides. Here, we describe the purification to homogeneity, characterization, gene cloning, and heterologous expression of this enzyme, which we call ScpA. Purified ScpA is a monomeric, pepstatin-insensitive carboxyl proteinase with a molecular mass of 37 kDa which exhibited the highest reactivity toward collagen (type I, from a bovine Achilles tendon) among the macromolecular substrates examined. On the basis of the sequences of the peptides obtained by digestion of collagen with ScpA, the following synthetic peptides were designed as substrates for ScpA and kinetically analyzed: Phe-Gly-Pro-Ala*Gly-Pro-Ile-Gly (kcat, 5.41 s−1; Km, 32 μM) and Met-Gly-Pro-Arg*Gly-Phe-Pro-Gly-Ser (kcat, 351 s−1; Km, 214 μM), where the asterisks denote the scissile bonds. The cloned scpA gene encoded a protein of 553 amino acids with a calculated molecular mass of 57,167 Da. Heterologous expression of the scpA gene in the Escherichia coli cells yielded a mature 37-kDa species after a two-step proteolytic cleavage of the precursor protein. Sequencing of the scpA gene revealed that ScpA was a collagenolytic member of the serine-carboxyl proteinase family (the S53 family according to the MEROPS database), which is a recently identified proteinase family on the basis of crystallography results. Unexpectedly, ScpA was highly similar to a member of this family, kumamolysin, whose specificity toward macromolecular substrates has not been defined.  相似文献   

6.
脱水素(DHNs, dehydrins)是LEA II亚家族蛋白,在种子发育后期大量积累,并受不同逆境胁迫处理诱导表达。在中间锦鸡儿干旱胁迫抑制性削减杂交文库中筛选到了一段 DHN1 序列,利用RACE技术克隆获得基因全长序列。序列比对分析表明, CiDHN1 具有开放阅读框891bp,起始密码子为ATG,终止密码子为TAG,编码297个氨基酸,含有5个Y片段和一个K片段,与CiDHN1相似性最高的为山茱萸科主教红端木(Cornus sericea),相似性为39%。系统进化分析显示CiDHN1单独聚为一支,推测该蛋白为新的功能未知蛋白。亚细胞定位结果表明CiDHN1定位在细胞质、质膜和细胞核。荧光定量PCR结果显示 CiDHN1 的表达受冷、脱水和NaCl等非生物胁迫的诱导。 CiDHN1 过量表达拟南芥后,其中表达量最强的株系对200 mmol/L的NaCl处理较为敏感。CiDHN1在中间锦鸡儿抵抗逆境胁迫中的功能有待于进一步研究。  相似文献   

7.
In the present study, an endochitinase gene, Lbchi32, was cloned from Limonium bicolor. The cDNA sequence of Lbchi32 was 1,443 bp in length and encoded 319 amino acid residues. The DNA sequence of Lbchi32 was 2,512 bp in length and contained three exons and two introns. The Lbchi32 gene was inserted into a pPIC9 vector and transferred into Pichia pastoris strains GS115 and KM71 for heterologous expression. SDS-PAGE analyses indicated that LbCHI32 was expressed in both GS115 and KM71 and that it was secreted extracellularly. The optimal reaction conditions for LbCHI32 activity are 45°C, pH 5.0, and 5 mM Ba2+. The LbCHI32 enzyme can efficiently degrade chitin, chitin derivatives, and the cell walls of different pathogenic fungi, including phytopathogenic Rhizoctonia solani, Fusarium oxysporum, Sclerotinia sclerotiorum, Valsa sordida, Septoria tritici, and Phytophthora sojae. These findings suggest that Lbchi32 has potential use in the degradation of chitin and chitin derivatives.  相似文献   

8.
△12脂肪酸脱氢酶(△ 12 fatty acid desaturase,△ 12 FAD,也称为fad2)催化油酸生成亚油酸,是植物体内生成多不饱和脂肪酸的关键酶,种子中特异表达的fad2基因负责种子贮脂中多不饱和脂肪酸亚油酸的生成,决定种子油脂的成分和营养价值.采用RT-PCR和RACE技术从中间锦鸡儿未成熟种子中克隆了种子特异表达的fad2-1A,fad2-1B基因,fad2-1A编码的前283个氨基酸与fad2-1B的同源性高达98.9%,前者比后者多编码97个氨基酸,全部氨基酸残基的同源性为70.71%.将fad2-1A克隆到真核表达载体pYES2中,构建了重组质粒pYES2-fad2-1A,经PCR检测、质粒酶切、测序等检测,目的基因确实插入重组质粒,且方向正确,为进一步研究fad2基因的功能和表达调控机理奠定了基础.  相似文献   

9.
A biosynthetic gene cluster of siderophore consisting of five open reading frames (ORFs) was cloned by functional screening of a metagenomic library constructed from tidal-flat sediment. Expression of the cloned biosynthetic genes in Escherichia coli led to the production of vibrioferrin, a siderophore originally reported for the marine bacterium Vibrio parahaemolyticus. To the best of our knowledge, this is the first example of heterologous production of a siderophore by biosynthetic genes cloned from a metagenomic library. The cloned cluster was one of the largest of the clusters obtained by functional screening. In this study, we demonstrated and extended the possibility of function-based metagenomic research.  相似文献   

10.
随着基因工程技术的快速发展,通过对不同菌株腈水解酶基因的分析,将其克隆到表达菌株内,可以构建高效并且稳定的基因工程菌。对腈水解酶进行分子改造可以明显提高酶的活性、稳定性、底物耐受性和底物特异性等性能,为腈水解酶的工业化应用提供了可能。综述了腈水解酶的来源、结构、催化机制、克隆表达、固定化及分子改造等方面的研究进展。同时对腈水解酶的研究进行了展望,具有重要的指导意义。  相似文献   

11.
12.
13.
14.
The actinomycin synthetases ACMS I, II, and III catalyze the assembly of the acyl peptide lactone precursor of actinomycin by a nonribosomal mechanism. We have cloned the genes of ACMS I (acmA) and ACMS II (acmB) by hybridization screening of a cosmid library of Streptomyces chrysomallus DNA with synthetic oligonucleotides derived from peptide sequences of the two enzymes. Their genes were found to be closely linked and are arranged in opposite orientations. Hybridization mapping and partial sequence analyses indicate that the gene of an additional peptide synthetase, most likely the gene of ACMS III (acmC), is located immediately downstream of acmB in the same orientation. The protein sequence of ACMS II, deduced from acmB, shows that the enzyme contains two amino acid activation domains, which are characteristic of peptide synthetases, and an additional epimerization domain. Heterologous expression of acmB from the mel promoter of plasmid PIJ702 in Streptomyces lividans yielded a functional 280-kDa peptide synthetase which activates threonine and valine as enzyme-bound thioesters. It also catalyzes the dipeptide formation of threonyl–l-valine, which is epimerized to threonyl–d-valine. Both of these dipeptides are enzyme bound as thioesters. This catalytic activity is identical to the in vitro activity of ACMS II from S. chrysomallus.The actinomycins are a class of chromopeptide lactones produced by various Streptomyces strains. They contain two pentapeptide lactone rings attached to chromophoric 4,6-dimethylphenoxazinone-1,9-dicarboxylic acid (actinocin) in an amide-like fashion. Actinocin is formally derived from the compound 4-methyl-3-hydroxyanthranilic acid (4-MHA), but actually the bicyclic actinomycins arise from the oxidative condensation of two preformed monocyclic 4-MHA pentapeptide lactones (12). Previous investigations have revealed that the formation of the 4-MHA pentapeptide lactones is catalyzed by three actinomycin synthetases (ACMS I, II, and III) (13, 15). ACMS I (45 kDa) is a 4-MHA–AMP ligase which activates 4-MHA as adenylate. The five amino acids of the pentapeptide lactone ring of actinomycin (NH2-cyclo[Thr–d-Val–Pro–N-methyl-Gly–N-methyl-Val] for actinomycin D) are assembled by ACMS II (280 kDa) and ACMS III (480 kDa) which from their properties belong to the class of peptide synthetases (13, 26, 27). ACMS II catalyzes the activation of threonine and valine. In the presence of ACMS I, which supplies 4-MHA–adenylate, 4-MHA–threonine and 4-MHA–threonyl–d-valine (via 4-MHA–threonyl–l-valine) are formed on the surface of ACMS II. In the absence of 4-MHA or ACMS I, purified ACMS II can synthesize both threonyl–l-valine and threonyl–d-valine, though to a lesser extent than the corresponding 4-MHA dipeptides can. The epimerization of valine is catalyzed by ACMS II at the acyl-dipeptide stage. An analysis of ACMS III suggests that it elongates the 4-MHA–Thr–d-Val dipeptide by successive incorporation of proline, N-methylglycine (sarcosine), and N-methyl-l-valine into the growing peptide chain (13). N-methylation is an additional feature of ACMS III. A total cell-free system for 4-MHA pentapeptide lactone synthesis is not available yet. Thus, it is not known how 4-MHA dipeptide transfer from ACMS II to ACMS III is accomplished, nor is the mechanism of lactone formation and release from the 4-MHA pentapeptide known.The available data indicate that ACMS II and ACMS III contain two- and three-amino-acid activation domains, respectively. It is known that activation domains of peptide synthetases are highly conserved in their sequences and are composed of a segment for amino acid adenylation and a segment for binding the activated amino acid as a thioester (17, 24, 25, 32). Thioester formation occurs via the thiol group of 4′-phosphopantetheine, which is a covalently bound cofactor of the activation domain. ACMS II and III both contain 4′-phosphopantetheine. In contrast, ACMS I has no 4′-phosphopantetheine cofactor, consistent with the finding that it does not form a thioester with 4-MHA. Data from previous work pointed instead to the formation of a 4-MHA thioester with ACMS II (26). In order to investigate the modular structure of the ACMSs and the reaction mechanisms in more detail, we set out to clone the ACMS genes from Streptomyces chrysomallus with oligonucleotide probes derived from partial sequences of ACMS I and II. We show that the genes of ACMS I and II and of a third peptide synthetase, most probably the gene of ACMS III (acmA, acmB, and acmC, respectively) are closely linked, forming a gene cluster. A total sequence determination of acmB and the characterization of the heterologously expressed functional active gene product confirm the significance of this peptide synthetase gene cluster.  相似文献   

15.
目的:分析水稻OsWTF1基因启动子的功能及核心序列。方法:利用PCR技术从水稻日本晴基因组中克隆了转录因子WTF1编码区5上游大小为2049bp的调控区域,命名为OsWTF1,将它和长度为1631、608、474、415bp的5端缺失体分别与GUS基因融合构建表达载体,并用农杆菌介导法转化水稻。结果:GUS组织化学分析表明,OsWTF1、Os1631能够驱动GUS基因在根、茎、叶、叶鞘、花药、颖壳上的表达,Os608,Os474,Os415能驱动GUS在根、茎、花药、颖壳中表达,在叶鞘中未表达,而且在叶中的表达也很微弱。结论:OsWTF1启动子核心序列可能位于-1bp--415bp之间,在-608bp--1631bp之间可能存在与基因叶肉特异表达相关的重要元件。  相似文献   

16.
小麦几丁质酶基因的异种表达及其功能鉴定   总被引:3,自引:0,他引:3  
几丁质酶参与植物的发育及防卫反应,并与人类疾病发生有关.文章研究了小麦几丁质酶基因Wch2经根癌农杆菌介导的烟草瞬间表达和转基因拟南芥的稳定表达,Western杂交及酶活测定证实,瞬间表达的小麦几丁质酶分子量约30 kD,具有降解几丁质多聚物的功能;Wch2在转入拟南芥后表达量高,尖孢镰刀菌接种的鉴定表明,表达Wch2的转基因植株的抗病性显著高于表达绿色荧光蛋白的对照植株.这些结果说明Wch2的异种表达,可用于植物抗病基因工程,以增强植物的抗病性.  相似文献   

17.
Esterases have recurrently been implicated in insecticide resistance in Helicoverpa armigera but little is known about the underlying molecular mechanisms. We used a baculovirus system to express 14 of 30 full-length esterase genes so far identified from midgut cDNA libraries of this species. All 14 produced esterase isozymes after native PAGE and the isozymes for seven of them migrated to two regions of the gel previously associated with both organophosphate and pyrethroid resistance in various strains. Thirteen of the enzymes obtained in sufficient yield for further analysis all showed tight binding to organophosphates and low but measurable organophosphate hydrolase activity. However there was no clear difference in activity between the isozymes from regions associated with resistance and those from elsewhere in the zymogram, or between eight of the isozymes from a phylogenetic clade previously associated with resistance in proteomic and quantitative rtPCR experiments and five others not so associated. By contrast, the enzymes differed markedly in their activities against nine pyrethroid isomers and the enzymes with highest activity for the most insecticidal isomers were from regions of the gel and, in some cases, the phylogeny that had previously been associated with pyrethroid resistance. Phospholipase treatment confirmed predictions from sequence analysis that three of the isozymes were GPI anchored. This unusual feature among carboxylesterases has previously been suggested to underpin an association that some authors have noted between esterases and resistance to the Cry1Ac toxin from Bacillus thuringiensis. However these three isozymes did not migrate to the zymogram region previously associated with Cry1Ac resistance.  相似文献   

18.
Methyl esters of 3-epi-GA3 and 3-epi-GA1 were efficiently prepared from methyl esters of GA3 and GA1 respectively, by highly selective epimerization of the 3-hydroxyl function with a base in a low-polar aprotic medium.  相似文献   

19.
Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first step of the pentose phosphate pathway. In erythrocytes, the functionality of the pathway is crucial to protect these cells against oxidative damage. G6PD deficiency is the most frequent enzymopathy in humans with a global prevalence of 4.9 %. The clinical picture is characterized by chronic or acute hemolysis in response to oxidative stress, which is related to the low cellular activity of G6PD in red blood cells. The disease is heterogeneous at genetic level with around 160 mutations described, mostly point mutations causing single amino acid substitutions. The biochemical studies aimed to describe the detrimental effects of mutations on the functional and structural properties of human G6PD are indispensable to understand the molecular physiopathology of this disease. Therefore, reliable systems for efficient expression and purification of the protein are highly desirable. In this work, human G6PD was heterologously expressed in Escherichia coli and purified by immobilized metal affinity chromatography in a single chromatographic step. The structural and functional characterization indicates that His-tagged G6PD resembles previous preparations of recombinant G6PD. In contrast with previous protein yield systems, our method is based on commonly available resources and fully accessible laboratory equipment; therefore, it can be readily implemented.  相似文献   

20.
从人胎盘组织中提取总DNA, 经PCR扩增编码人β神经生长因子(β-NGF)成熟肽的基因,并克隆到大肠杆菌表达载体pET15b中。重组质粒pET15b-NGF经测序与报道的完全一致。重组质粒转化大肠杆菌BL21(DE3)pLysS,经IPTG诱导表达得到16kD的目的蛋白带,与预期的大小一致,NGF表达量约占全菌总蛋白的25%.经过亲和层析柱(Ni2+-charged IDA his-bind column)纯化后得到了单一的NGF蛋白条带,蛋白纯度可达90%以上,从每升表达菌液中可以得到4.56mgNGF。表达产物的Western 印迹鉴定结果显示:重组人神经生长因子能与兔抗人β-NGF的多克隆抗体发生特异性结合反应,在16kD处出现单一的条带,表明诱导表达的重组NGF具有免疫学活性。鸡胚背根神经节感觉神经元鉴定试验表明,本实验表达的重组NGF具有良好的生物学活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号