首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Material properties of lipid bilayers, including thickness, intrinsic curvature and compressibility regulate the function of mechanosensitive (MS) channels. This regulation is dependent on phospholipid composition, lateral packing and organization within the membrane. Therefore, a more complete framework to understand the functioning of MS channels requires insights into bilayer structure, thermodynamics and phospholipid structure, as well as lipid-protein interactions. Phospholipids and MS channels interact with each other mainly through electrostatic forces and hydrophobic matching, which are also crucial for antimicrobial peptides. They are excellent models for studying the formation and stabilization of membrane pores. Importantly, they perform equivalent responses as MS channels: (1) tilting in response to tension and (2) dissipation of osmotic gradients. Lessons learned from pore forming peptides could enrich our knowledge of mechanisms of action and evolution of these channels. Here, the current state of the art is presented and general principles of membrane regulation of mechanosensitive function are discussed.  相似文献   

2.
Biological membranes are essential for normal function and regulation of cells, forming a physical barrier between extracellular and intracellular space and cellular compartments. These physical barriers are subject to mechanical stresses. As a consequence, nature has developed proteins that are able to transpose mechanical stimuli into meaningful intracellular signals. These proteins, termed Mechanosensitive (MS) proteins provide a variety of roles in response to these stimuli. In prokaryotes these proteins form transmembrane spanning channels that function as osmotically activated nanovalves to prevent cell lysis by hypoosmotic shock. In eukaryotes, the function of MS proteins is more diverse and includes physiological processes such as touch, pain and hearing. The transmembrane portion of these channels is influenced by the physical properties such as charge, shape, thickness and stiffness of the lipid bilayer surrounding it, as well as the bilayer pressure profile. In this review we provide an overview of the progress to date on advances in our understanding of the intimate biophysical and chemical interactions between the lipid bilayer and mechanosensitive membrane channels, focusing on current progress in both eukaryotic and prokaryotic systems. These advances are of importance due to the increasing evidence of the role the MS channels play in disease, such as xerocytosis, muscular dystrophy and cardiac hypertrophy. Moreover, insights gained from lipid–protein interactions of MS channels are likely relevant not only to this class of membrane proteins, but other bilayer embedded proteins as well. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

3.
While mechanobiological processes employ diverse mechanisms, at their heart are force-induced perturbations in the structure and dynamics of molecules capable of triggering subsequent events. Among the best characterized force-sensing systems are bacterial mechanosensitive channels. These channels reflect an intimate coupling of protein conformation with the mechanics of the surrounding membrane; the membrane serves as an adaptable sensor that responds to an input of applied force and converts it into an output signal, interpreted for the cell by mechanosensitive channels. The cell can exploit this information in a number of ways: ensuring cellular viability in the presence of osmotic stress and perhaps also serving as a signal transducer for membrane tension or other functions. This review focuses on the bacterial mechanosensitive channels of large (MscL) and small (MscS) conductance and their eukaryotic homologs, with an emphasis on the outstanding issues surrounding the function and mechanism of this fascinating class of molecules.  相似文献   

4.
As biological force-sensing systems mechanosensitive (MS) ion channels present the best example of coupling molecular dynamics of membrane proteins to the mechanics of the surrounding cell membrane. In animal cells MS channels have over the past two decades been very much in focus of mechanotransduction research. In recent years this helped to raise awareness of basic and medical researchers about the role that abnormal MS channels may play in the pathophysiology of diseases, such as cardiac hypertrophy, atrial fibrillation, muscular dystrophy or polycystic kidney disease. To date a large number of MS channels from organisms of diverse phylogenetic origins have been identified at the molecular level; however, the structure of only few of them has been determined. Although their function has extensively been studied in a great variety of cells and tissues by different experimental approaches it is, with exception of bacterial MS channels, very little known about how these channels sense mechanical force and which cellular components may contribute to their function. By focusing on MS channels found in animal cells this article discusses the ways in which the connections between cytoskeleton and ion channels may contribute to mechanosensory transduction in these cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

5.
Polyunsaturated Fatty Acid Modulation of Voltage-Gated Ion Channels   总被引:2,自引:0,他引:2  
Arachidonic acid (AA) was found to inhibit the function of whole-cell voltage-gated (VG) calcium currents nearly 16 years ago. There are now numerous examples demonstrating that AA and other polyunsaturated fatty acids (PUFAs) modulate the function of VG ion channels, primarily in neurons and muscle cells. We will review and extract some common features about the modulation by PUFAs of VG calcium, sodium, and potassium channels and discuss the impact of this modulation on the excitability of neurons and cardiac myocytes. We will describe the fatty acid nature of the membrane, how fatty acids become available to function as modulators of VG channels, and the physiologic importance of this type of modulation. We will review the evidence for molecular mechanisms and assess our current understanding of the structural basis for modulation. With guidance from research on the structure of fatty acid binding proteins, the role of lipids in gating mechanosensitive (MS) channels, and the impact of membrane lipid composition on membrane-embedded proteins, we will highlight some avenues for future investigations.  相似文献   

6.
The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd3+ ions from the membrane bilayer and thus remove the MscL channel block.  相似文献   

7.
The ubiquity of mechanosensitive (MS) channels triggered a search for their functional homologs in Archaea. Archaeal MS channels were found to share a common ancestral origin with bacterial MS channels of large and small conductance, and sequence homology with several proteins that most likely function as MS ion channels in prokaryotic and eukaryotic cell-walled organisms. Although bacterial and archaeal MS channels differ in conductive and mechanosensitive properties, they share similar gating mechanisms triggered by mechanical force transmitted via the lipid bilayer. In this review, we suggest that MS channels of Archaea can bridge the evolutionary gap between bacterial and eukaryotic MS channels, and that MS channels of Bacteria, Archaea and cell-walled Eukarya may serve similar physiological functions and may have evolved to protect the fragile cellular membranes in these organisms from excessive dilation and rupture upon osmotic challenge.  相似文献   

8.
The hydrophobic mismatch between the lipid bilayer and integral membrane proteins has well-defined effect on mechanosensitive (MS) ion channels. Also, membrane local bending is suggested to modulate MS channel activity. Although a number of studies have already shown the significance of each individual factor, the combined effect of these physical factors on MS channel activity have not been investigated. Here using finite element simulation, we study the combined effect of hydrophobic mismatch and local bending on the archetypal mechanosensitive channel MscL. First we show how the local curvature direction impacts on MS channel modulation. In the case of MscL, we show inward (cytoplasmic) bending can more effectively gate the channel compared to outward bending. Then we indicate that in response to a specific local curvature, MscL inserted in a bilayer with the same hydrophobic length is more expanded in the constriction pore region compared to when there is a protein-lipid hydrophobic mismatch. Interestingly in the presence of a negative mismatch (thicker lipids), MscL constriction pore is more expanded than in the presence of positive mismatch (thinner lipids) in response to an identical membrane curvature. These results were confirmed by a parametric energetic calculation provided for MscL gating. These findings have several biophysical consequences for understanding the function of MS channels in response to two major physical stimuli in mechanobiology, namely hydrophobic mismatch and local membrane curvature.  相似文献   

9.
Bone adapts to its environment by a process in which osteoblasts and osteocytes sense applied mechanical strain. One possible pathway for the detection of strain involves mechanosensitive channels and we sought to determine their sensitivity to membrane strain and tension. We used a combination of experimental and computational modeling techniques to gain new insights into cell mechanics and the regulation of mechanosensitive channels. Using patch-clamp electrophysiology combined with video microscopy, we recorded simultaneously the evolution of membrane extensions into the micropipette, applied pressure, and membrane currents. Nonselective mechanosensitive cation channels with a conductance of 15 pS were observed. Bleb aspiration into the micropipette was simulated using finite element models incorporating the cytoplasm, the actin cortex, the plasma membrane, cellular stiffening in response to strain, and adhesion between the membrane and the micropipette. Using this model, we examine the relative importance of the different cellular components in resisting suction into the pipette and estimate the membrane strains and tensions needed to open mechanosensitive channels. Radial membrane strains of 800% and tensions of 5 10(-4) N.m(-1) were needed to open 50% of mechanosensitive channels. We discuss the relevance of these results in the understanding of cellular reactions to mechanical strain and bone physiology.  相似文献   

10.
Bacteria are subjected to a host of different environmental stresses. One such insult occurs when cells encounter changes in the osmolarity of the surrounding media resulting in an osmotic shock. In recent years, a great deal has been learned about mechanosensitive (MS) channels which are thought to provide osmoprotection in these circumstances by opening emergency release valves in response to membrane tension. However, even the most elementary physiological parameters such as the number of MS channels per cell, how MS channel expression levels influence the physiological response of the cells, and how this mean number of channels varies from cell to cell remain unanswered. In this paper, we make a detailed quantitative study of the expression of the mechanosensitive channel of large conductance (MscL) in different media and at various stages in the growth history of bacterial cultures. Using both quantitative fluorescence microscopy and quantitative Western blots our study complements earlier electrophysiology-based estimates and results in the following key insights: i) the mean number of channels per cell is much higher than previously estimated, ii) measurement of the single-cell distributions of such channels reveals marked variability from cell to cell and iii) the mean number of channels varies under different environmental conditions. The regulation of MscL expression displays rich behaviors that depend strongly on culturing conditions and stress factors, which may give clues to the physiological role of MscL. The number of stress-induced MscL channels and the associated variability have far reaching implications for the in vivo response of the channels and for modeling of this response. As shown by numerous biophysical models, both the number of such channels and their variability can impact many physiological processes including osmoprotection, channel gating probability, and channel clustering.  相似文献   

11.
MscL, a large conductance mechanosensitive channel (MSC), is a ubiquitous osmolyte release valve that helps bacteria survive abrupt hypo-osmotic shocks. It has been discovered and rigorously studied using the patch-clamp technique for almost three decades. Its basic role of translating tension applied to the cell membrane into permeability response makes it a strong candidate to function as a mechanoelectrical transducer in artificial membrane-based biomolecular devices. Serving as building blocks to such devices, droplet interface bilayers (DIBs) can be used as a new platform for the incorporation and stimulation of MscL channels. Here, we describe a micropipette-based method to form DIBs and measure the activity of the incorporated MscL channels. This method consists of lipid-encased aqueous droplets anchored to the tips of two opposing (coaxially positioned) borosilicate glass micropipettes. When droplets are brought into contact, a lipid bilayer interface is formed. This technique offers control over the chemical composition and the size of each droplet, as well as the dimensions of the bilayer interface. Having one of the micropipettes attached to a harmonic piezoelectric actuator provides the ability to deliver a desired oscillatory stimulus. Through analysis of the shapes of the droplets during deformation, the tension created at the interface can be estimated. Using this technique, the first activity of MscL channels in a DIB system is reported. Besides MS channels, activities of other types of channels can be studied using this method, proving the multi-functionality of this platform. The method presented here enables the measurement of fundamental membrane properties, provides a greater control over the formation of symmetric and asymmetric membranes, and is an alternative way to stimulate and study mechanosensitive channels.  相似文献   

12.
Basic amphipathic alpha-helical peptides Ac-(Leu-Ala-Arg-Leu)3 or 4-NHCH3 (4(3) or 4(4)) and H-(Leu-Ala-Arg-Leu)3-(Leu-Arg-Ala-Leu)2 or 3-OH (4(5) or 4(6)) were synthesized and studied in terms of their interactions with phospholipid membranes, biological activity, and ion channel-forming ability. CD study of the peptides showed that they form alpha-helical structures in the presence of phospholipid liposomes and thus they have amphipathic distribution of the side chains along the axis of the helix. A leakage study of carboxyfluorescein encapsulated in phospholipid vesicles indicated that the peptides possess a highly potent ability to perturb the membrane structure. Membrane current measurements using the planar lipid bilayer technique revealed that the peptide 4(6), which was long enough to span the lipid bilayer in the alpha-helical structure, formed cation-selective ion channels at a concentration of 0.5 microM in a planar diphytanoylphosphatidylcholine bilayer. In contrast, other shorter peptides failed to form discrete and stable channels though they occasionally induced an increase in the membrane current with erratic conductance levels. The probability of detecting a conductance increase was in the order of 4(6) greater than 4(5) greater than 4(4) greater than 4(3), which corresponds to the order of the peptide chain lengths. Furthermore, 4(6) but not 4(5) showed an antimicrobial activity against both Gram-positive and -negative bacteria. The structure of ion channels formed by 4(6) and the relationship between the peptide chain length and biological activity of the synthetic peptides are discussed.  相似文献   

13.
Mechanosensors are important for many life functions, including the senses of touch, balance, and proprioception; cardiovascular regulation; kidney function; and osmoregulation. Many channels from an assortment of families are now candidates for eukaryotic mechanosensors and proprioception, as well as cardiovascular regulation, kidney function, and osmoregulation. Bacteria also possess two families of mechanosensitive channels, termed MscL and MscS, that function as osmotic emergency release valves. Of the two channels, MscL is the most conserved, most streamlined in structure, and largest in conductance at 3.6 nS with a pore diameter in excess of 30 Å; hence, the structural changes required for gating are exaggerated and perhaps more easily defined. Because of these properties, as well as its tractable nature, MscL represents a excellent model for studying how a channel can sense and respond to biophysical changes of a lipid bilayer. Many of the properties of the MscL channel, such as the sensitivity to amphipaths, a helix that runs along the membrane surface and is connected to the pore via a glycine, a twisting and turning of the transmembrane domains upon gating, and the dynamic changes in membrane interactions, may be common to other candidate mechanosensors. Here we review many of these properties and discuss their structural and functional implications.  相似文献   

14.
Analysis of TRPC3-interacting proteins by tandem mass spectrometry   总被引:1,自引:0,他引:1  
Mammalian transient receptor potential canonical (TRPC) channels are a family of nonspecific cation channels that are activated in response to stimulation of phospholipase C (PLC)-dependent hydrolysis of the membrane lipid phosphatidylinositol 4,5-bisphosphate. Despite extensive studies, the mechanism(s) involved in regulation of mammalian TRPC channels remains unknown. Presence of various protein-interacting domains in TRPC channels have led to the suggestion that they associate with proteins that are involved in their function and regulation. This study was directed toward identifying the proteins associated with native TRPC3 using a shotgun proteomic approach. Anti-TRPC3 antibody was used to immunoprecipitate TRPC3 from solubilized rat brain crude membranes under conditions that allow retention of TRPC3 function. Proteins in the TRPC3 (using anti-TRPC3 antibody) and control (using rabbit IgG) immunoprecipitates were separated by SDS-PAGE, the gel was sectioned, and the resolved proteins were digested by trypsin in situ. After extraction of the peptides, the peptides were separated by HPLC and sequences derived by MS/MS. Analysis of the data revealed 64 specific TRPC3-associated proteins which can be grouped in terms of their cellular location and involvement in specific cellular function. Many of the proteins identified have been previously reported as TRPC3-regulatory proteins, such as IP3Rs and vesicle trafficking proteins. In addition, we report novel putative TRPC3-interacting proteins, including those involved in protein endocytosis and neuronal growth. To our knowledge, this is the first comprehensive proteomic analysis of a native TRPC channel. These data reveal potential TRPC3 regulatory proteins and provide novel insights of the mechanism(s) regulating TRPC3 channels as well as the possible cellular functions where the channel might be involved.  相似文献   

15.
Since their discovery in Escherichia coli some 20 years ago, studies of bacterial mechanosensitive (MS) ion channels have been at the forefront of the MS channel research field. Two major events greatly advanced the research on bacterial MS channels: (i) cloning of MscL and MscS, the MS channels of Large and Small conductance, and (ii) solving their 3D crystal structure. These events enabled further experimental studies employing EPR and FRET spectroscopy in addition to patch clamp and molecular biological techniques that have successfully been used in characterization of the structure and function of bacterial MS channels. In parallel with the experimental studies computational modelling has been applied to elucidate the molecular dynamics of MscL and MscS, which has significantly contributed to our understanding of basic physical principles of the mechanosensory transduction in living organisms.  相似文献   

16.
Research on bacterial mechanosensitive (MS) channels has since their discovery been at the forefront of the MS channel field due to extensive studies of the structure and function of MscL and MscS, two of the several different types of MS channels found in bacteria. Just a few years after these two MS channels were cloned their 3D structure was solved by X-ray crystallography. Today, the repertoire of multidisciplinary approaches used in experimental and theoretical studies following the cloning and crystallographic determination of the MscL and MscS structure has expanded by including electronparamagnetic resonance (EPR) and F?rster resonance energy transfer (FRET) spectroscopy aided by computational modelling employing molecular dynamics as well as Brownian dynamics simulations, which significantly advanced the understanding of structural determinants of the gating and conduction properties of these two MS channels. These extensive multidisciplinary studies of MscL and MscS have greatly contributed to elucidation of the basic physical principles of MS channel gating by mechanical force. This review summarizes briefly the major experimental and conceptual advancements, which helped in establishing MscL and MscS as a major paradigm of mechanosensory transduction in living cells.  相似文献   

17.
The accurate biological function of mechanosensitive (MS) channels is crucial for maintaining the viability of living cells. For instance, in vascular endothelial cells, calcium influx from the extracellular environment into cytoplasm is regulated by stretch-activated channels. However, the mechanism by which cells sense force remains unclear. For this study, we hypothesized that gating of ion channels is simply regulated by the direct mechanical stress induced in a membrane. We modeled a membrane channel using crystallographic data of the bacteria Mycobacterium tuberculosis (Tb-MscL) because MscL homologs are integral membrane proteins with sequence similarity to most known ion channels. Molecular dynamics (MD) simulations were performed to elucidate the gating mechanism of the channel protein in response to the fluid shear stress. Results suggest that the stretched membrane drives the interfacial part of the protein–membrane complex to expand and maintains the stability of the constricted part of the transmembrane pore. Moreover, structural similarities between Tb-MscL and the family of ligand-gated ion channels suggest that the conformational change of this model in response to fluid shear stress is useful for modeling the gating mechanism in a broad class of gated channels.  相似文献   

18.
《Journal of molecular biology》2019,431(17):3081-3090
Since life has emerged, gradients of osmolytes over the cell membrane cause pressure changes in the cell and require tight regulation to prevent cell rupture. The mechanosensitive channel of small conductance (MscS) releases solutes and water when a hypo-osmotic shock raises the pressure in the cell. It is a member of a large family of MscS-like channels found in bacteria, archaea, fungi and plants and model for mechanosensation. MscS senses the increase of tension in the membrane directly by the force from the lipids, but the molecular mechanism is still elusive. We determined the lipid interactions of MscS by resolving the structure of Escherichia coli MscS embedded in membrane discs to 2.9-Å resolution using cryo-electron microscopy. The membrane is attached only to parts of the sensor paddles of MscS, but phospholipid molecules move through grooves into remote pockets on the cytosolic side. On the periplasmic side, a lipid bound by R88 at the pore entrance is separated from the membrane by TM1 helices. The N-terminus interacts with the periplasmic membrane surface. We demonstrate that the unique membrane domain of MscS promotes deep penetration of lipid molecules and shows multimodal interaction with the membrane to fine-tune tension sensing.  相似文献   

19.
Many physiological processes such as cell division, endocytosis and exocytosis cause severe local curvature of the cell membrane. Local curvature has been shown experimentally to modulate numerous mechanosensitive (MS) ion channels. In order to quantify the effects of local curvature we introduced a coarse grain representative volume element for the bacterial mechanosensitive ion channel of large conductance (MscL) using continuum elasticity. Our model is designed to be consistent with the channel conformation in the closed and open states to capture its major continuum rheological behavior in response to the local membrane curvature. Herein we show that change in the local curvature of the lipid bilayer can modulate MscL activity considerably by changing both bilayer thickness and lateral pressure profile. Intriguingly, although bending in any direction results in almost the same free-energy cost, inward (cytoplasmic) bending favors channel opening, whereas outward (periplasmic) bending facilitates closing of the narrowest part of the MscL pore. This quantitative study using MscL as a model channel may have wide reaching consequences for the effect of local curvature on the physiological function of other types of prokaryotic and eukaryotic membrane proteins.  相似文献   

20.
Many physiological processes such as cell division, endocytosis and exocytosis cause severe local curvature of the cell membrane. Local curvature has been shown experimentally to modulate numerous mechanosensitive (MS) ion channels. In order to quantify the effects of local curvature we introduced a coarse grain representative volume element for the bacterial mechanosensitive ion channel of large conductance (MscL) using continuum elasticity. Our model is designed to be consistent with the channel conformation in the closed and open states to capture its major continuum rheological behavior in response to the local membrane curvature. Herein we show that change in the local curvature of the lipid bilayer can modulate MscL activity considerably by changing both bilayer thickness and lateral pressure profile. Intriguingly, although bending in any direction results in almost the same free-energy cost, inward (cytoplasmic) bending favors channel opening, whereas outward (periplasmic) bending facilitates closing of the narrowest part of the MscL pore. This quantitative study using MscL as a model channel may have wide reaching consequences for the effect of local curvature on the physiological function of other types of prokaryotic and eukaryotic membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号