首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.  相似文献   

3.
A remarkable feature of the 2009 pandemic H1N1 influenza virus is its efficient transmissibility in humans compared to that of precursor strains from the triple-reassortant swine influenza virus lineage, which cause only sporadic infections in humans. The viral components essential for this phenotype have not been fully elucidated. In this study, we aimed to determine the viral factors critical for aerosol transmission of the 2009 pandemic virus. Single or multiple segment reassortments were made between the pandemic A/California/04/09 (H1N1) (Cal/09) virus and another H1N1 strain, A/Puerto Rico/8/34 (H1N1) (PR8). These viruses were then tested in the guinea pig model to understand which segment of Cal/09 virus conferred transmissibility to the poorly transmissible PR8 virus. We confirmed our findings by generating recombinant A/swine/Texas/1998 (H3N2) (sw/Tx/98) virus, a representative triple-reassortant swine virus, containing segments of the Cal/09 virus. The data showed that the M segment of the Cal/09 virus promoted aerosol transmissibility to recombinant viruses with PR8 and sw/Tx/98 virus backgrounds, suggesting that the M segment is a critical factor supporting the transmission of the 2009 pandemic virus.  相似文献   

4.
2009年A(H1N1)pdm09亚型流感病毒在墨西哥暴发,之后在全世界流行。为了解海南省2016-2018年A(H1N1)pdm09亚型流感病毒流行态势,分析血凝素(HA)与神经氨酸酶(NA)基因遗传进化特征与变异情况,本研究从中国流感监测信息系统获取海南省2016-2018年流感病毒病原学监测数据,选取5家流感监测网络实验室分离鉴定的37株A(H1N1)pdm09亚型流感毒株进行HA与NA基因测序,利用MEGA 10.1.8构建HA与NA基因种系进化树,并分析其氨基酸变异情况。结果显示,2016-2018年共出现3次A(H1N1)pdm09亚型流感病毒活动高峰。2017年10月份以后的分离株(4/8)与2018年大部分分离株(21/22)独立于疫苗株A/Michigan/45/2015聚为一个小支,发生20余处HA与NA氨基酸位点变异。与疫苗株A/California/7/2009(2010-2016)相比,2016-2018年流感病毒分离株在HA基因抗原决定簇上发生7处氨基酸变异并有一个潜在糖基化位点,未发现HA基因受体结合位点变异与NA基因耐药性变异。本研究提示,2016-2018年,A(H1N1)pdm09亚型流感病毒逐步发生规律性进化,氨基酸变异频率有增加趋势,今后应持续加强流感病毒病原学监测,密切追踪A(H1N1)pdm09亚型流感病毒基因变异情况,为科学防控提供理论依据。  相似文献   

5.
Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian influenza A viruses are one of the natural hosts where such reassortment events could occur. Virological, histological and serological features of H5N1 virus infection in pigs were characterized in this study. Two- to three-week-old domestic piglets were intranasally inoculated with 10(6) EID(50) of A/Vietnam/1203/04 (VN/04), A/chicken/Indonesia/7/03 (Ck/Indo/03), A/Whooper swan/Mongolia/244/05 (WS/Mong/05), and A/Muscovy duck/Vietnam/ 209/05 (MDk/VN/05) viruses. Swine H3N2 and H1N1 viruses were studied as a positive control for swine influenza virus infection. The pathogenicity of the H5N1 HPAI viruses was also characterized in mouse and ferret animal models. Intranasal inoculation of pigs with H5N1 viruses or consumption of infected chicken meat did not result in severe disease. Mild weight loss was seen in pigs inoculated with WS/Mong/05, Ck/Indo/03 H5N1 and H1N1 swine influenza viruses. WS/Mong/05, Ck/Indo/03 and VN/04 viruses were detected in nasal swabs of inoculated pigs mainly on days 1 and 3. Titers of H5N1 viruses in nasal swabs were remarkably lower compared with those of swine influenza viruses. Replication of all four H5N1 viruses in pigs was restricted to the respiratory tract, mainly to the lungs. Titers of H5N1 viruses in the lungs were lower than those of swine viruses. WS/Mong/05 virus was isolated from trachea and tonsils, and MDk/VN/05 virus was isolated from nasal turbinate of infected pigs. Histological examination revealed mild to moderate bronchiolitis and multifocal alveolitis in the lungs of pigs infected with H5N1 viruses, while infection with swine influenza viruses resulted in severe tracheobronchitis and bronchointerstitial pneumonia. Pigs had low susceptibility to infection with H5N1 HPAI viruses. Inoculation of pigs with H5N1 viruses resulted in asymptomatic to mild symptomatic infection restricted to the respiratory tract and tonsils in contrast to mouse and ferrets animal models, where some of the viruses studied were highly pathogenic and replicated systemically.  相似文献   

6.
The epidemiological success of pandemic and epidemic influenza A viruses relies on the ability to transmit efficiently from person-to-person via respiratory droplets. Respiratory droplet (RD) transmission of influenza viruses requires efficient replication and release of infectious influenza particles into the air. The 2009 pandemic H1N1 (pH1N1) virus originated by reassortment of a North American triple reassortant swine (TRS) virus with a Eurasian swine virus that contributed the neuraminidase (NA) and M gene segments. Both the TRS and Eurasian swine viruses caused sporadic infections in humans, but failed to spread from person-to-person, unlike the pH1N1 virus. We evaluated the pH1N1 and its precursor viruses in a ferret model to determine the contribution of different viral gene segments on the release of influenza virus particles into the air and on the transmissibility of the pH1N1 virus. We found that the Eurasian-origin gene segments contributed to efficient RD transmission of the pH1N1 virus likely by modulating the release of influenza viral RNA-containing particles into the air. All viruses replicated well in the upper respiratory tract of infected ferrets, suggesting that factors other than viral replication are important for the release of influenza virus particles and transmission. Our studies demonstrate that the release of influenza viral RNA-containing particles into the air correlates with increased NA activity. Additionally, the pleomorphic phenotype of the pH1N1 virus is dependent upon the Eurasian-origin gene segments, suggesting a link between transmission and virus morphology. We have demonstrated that the viruses are released into exhaled air to varying degrees and a constellation of genes influences the transmissibility of the pH1N1 virus.  相似文献   

7.
A novel subtype of influenza A virus 09H1N1 has rapidly spread across the world. Evolutionary analyses of this virus have revealed that 09H1N1 is a triple reassortant of segments from swine, avian and human influenza viruses. In this study, we investigated factors shaping the codon usage bias of 09H1N1 and carried out cluster analysis of 60 strains of influenza A virus from different subtypes based on their codon usage bias. We discovered that more preferentially used codons of 09H1N1 are A-ended or U-ended...  相似文献   

8.
Feng  Zhaomin  Zhu  Wenfei  Yang  Lei  Liu  Jia  Zhou  Lijuan  Wang  Dayan  Shu  Yuelong 《中国病毒学》2021,36(1):43-51
Eurasian avian-like H1 N1(EA H1 N1) swine influenza virus(SIV) outside European countries was first detected in Hong Kong Special Administrative Region(Hong Kong, SAR) of China in 2001. Afterwards, EA H1 N1 SIVs have become predominant in pig population in this country. However, the epidemiology and genotypic diversity of EA H1 N1 SIVs in China are still unknown. Here, we collected the EA H1 N1 SIVs sequences from China between 2001 and 2018 and analyzed the epidemic and phylogenic features, and key molecular markers of these EA H1 N1 SIVs. Our results showed that EA H1 N1 SIVs distributed in nineteen provinces/municipalities of China. After a long-time evolution and transmission, EA H1 N1 SIVs were continuously reassorted with other co-circulated influenza viruses, including 2009 pandemic H1 N1(A(H1 N1)pdm09), and triple reassortment H1 N2(TR H1 N2) influenza viruses, generated 11 genotypes. Genotype 3 and 5, both of which were the reassortments among EA H1 N1, A(H1 N1)pdm09 and TR H1 N2 viruses with different origins of M genes, have become predominant in pig population. Furthermore, key molecular signatures were identified in EA H1 N1 SIVs. Our study has drawn a genotypic diversity image of EA H1 N1 viruses, and could help to evaluate the potential risk of EA H1 N1 for pandemic preparedness and response.  相似文献   

9.
10.
Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3'SL-PAA and 6'SLN-PAA, which contained, respectively, 3'-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6'-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6'SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q-->L, increased binding to 6'SLN-PAA, while among H1 swine viruses, the 190E-->D and 225G-->E mutations in the HA appeared important for the increased affinity of the viruses for 6'SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.  相似文献   

11.
【目的】本研究旨在通过焦磷酸测序技术对我国分离的H1N1、H3N2、H9N2等3种基因型的10株猪流感病毒分离株进行金刚烷胺耐药性鉴定。【方法】流感病毒M2蛋白5个关键位点氨基酸残基(第26、27、30、31和34位)中的任何一个发生突变会导致抗流感病毒药物中金刚烷胺抗药性的产生。本研究利用焦磷酸测序技术对2004-2008年国内分离的10株猪流感病毒M基因金刚烷胺耐药性分子决定区进行了鉴定,并进行抗药性分析。【结果】基于M2蛋白基因保守区序列建立的焦磷酸测序技术能用于国内猪流感病毒的快速检测,且具有较好的特异性和重复性。抗药性分析表明10株猪流感病毒国内分离株中5株H1N1分离株全部耐药,主要存在M2蛋白的V27T、V27I或S31N位点的突变,而4株H3N2和1株H9N2猪流感病毒分离株在M2蛋白5个关键位点上均未出现变异,表明其对金刚烷胺敏感。【结论】基于M基因的焦磷酸测序技术可以用于我国猪流感病毒金刚烷胺耐药性快速鉴定。  相似文献   

12.
Influenza virus exhibits two morphologies – spherical and filamentous. Strains that have been grown extensively in laboratory substrates are comprised predominantly of spherical virions while clinical or low passage isolates produce a mixture of spheres and filamentous virions of varying lengths. The filamentous morphology can be lost upon continued passage in embryonated chicken eggs, a common laboratory substrate for influenza viruses. The fact that the filamentous morphology is maintained in nature but lost in favor of a spherical morphology in ovo suggests that filaments confer a selective advantage within the infected host that is not necessary for growth in laboratory substrates. Indeed, we have recently shown that filament-producing variant viruses are selected upon passage of the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1) [PR8] in guinea pigs. Toward determining the nature of the selective advantage conferred by filaments, we sought to identify functional differences between spherical and filamentous particles. We compared the wild-type PR8 virus to two previously characterized recombinant PR8 viruses in which single point mutations within M1 confer a filamentous morphology. Our results indicate that these filamentous PR8 mutants have higher neuraminidase activities than the spherical PR8 virus. Conversely, no differences were observed in HAU:PFU or HAU:RNA ratios, binding avidity, sensitivity to immune serum in hemagglutination inhibition assays, or virion stability at elevated temperatures. Based on these results, we propose that the pleomorphic nature of influenza virus particles is important for the optimization of neuraminidase functions in vivo.  相似文献   

13.
Several live attenuated influenza virus A/California/7/09 (H1N1) (CA09) candidate vaccine variants that possess the hemagglutinin (HA) and neuraminidase (NA) gene segments from the CA09 virus and six internal protein gene segments from the cold-adapted influenza virus A/Ann Arbor/6/60 (H2N2) virus were generated by reverse genetics. The reassortant viruses replicated relatively poorly in embryonated chicken eggs. To improve virus growth in eggs, reassortants expressing the HA and NA of CA09 were passaged in MDCK cells and variants exhibiting large-plaque morphology were isolated. These variants replicated at levels approximately 10-fold higher than the rate of replication of the parental strains in embryonated chicken eggs. Sequence analysis indicated that single amino acid changes at positions 119, 153, 154, and 186 were responsible for the improved growth properties in MDCK cells and eggs. In addition, the introduction of a mutation at residue 155 that was previously shown to enhance the replication of a 1976 swine influenza virus also significantly improved the replication of the CA09 virus in eggs. Each variant was further evaluated for receptor binding preference, antigenicity, attenuation phenotype, and immunogenicity. Mutations at residues 153, 154, and 155 drastically reduced viral antigenicity, which made these mutants unsuitable as vaccine candidates. However, changes at residues 119 and 186 did not affect virus antigenicity or immunogenicity, justifying their inclusion in live attenuated vaccine candidates to protect against the currently circulating 2009 swine origin H1N1 viruses.Human infections with the swine origin influenza virus A (H1N1) were first detected in April 2009 and spread across the globe, resulting in WHO declaring a pandemic on 12 June 2009 for the first time in the past 41 years. More than 296,471 people have had confirmed infections with this novel H1N1 virus, and there have been at least 3,486 deaths as of September 18, 2009. In the last century, an influenza H1N1 virus caused the devastating 1918-1919 pandemic; this pandemic was characterized by a mild outbreak in the spring of 1918, followed by a lethal wave globally in the fall of that year which killed as many as 50 million people worldwide (20, 29). The 2009 H1N1 viruses circulating globally since April 2009 have not caused a significant rise in mortality related to influenza. Nucleotide sequence analysis suggested that E627 in PB2, a deletion of the PDZ ligand domain in NS1, and the lack of the PB1-F2 open reading frame in the 2009 H1N1 viruses may contribute to the relatively mild virulence (20, 26, 27). Recent animal studies have shown that the 2009 H1N1 influenza viruses did not replicate in tissues beyond the respiratory tract and did not cause significant mortality in the ferret model; however, the 2009 H1N1 viruses are capable of infecting deep in the lung tissues and caused more significant lesions in the lung tissues of animals, including nonhuman primates, than typical seasonal strains (13, 17, 19). Children and young adults are particularly susceptible to the 2009 H1N1 virus infection because they have no or low immunity to the novel 2009 H1N1 strains (11, 13). The widespread and rapid distribution of the 2009 H1N1 viruses in humans raises a concern about the evolution of more virulent strains during passage in the population. One fear is that mutant forms of the 2009 H1N1 viruses may exhibit significantly increased virulence (2, 19). Therefore, there is an urgent need to develop an effective vaccine to control the influenza pandemic caused by the swine origin H1N1 viruses.Live attenuated influenza vaccine (LAIV) has been licensed in the United States annually since 2003. The seasonal vaccine protects against influenza illness and elicits both systemic and mucosal immune responses, including serum hemagglutination inhibition (HAI) antibodies that react to antigenically drifted strains (3, 4). A critical attribute of an effective pandemic vaccine is its capability to elicit an immune response in immunonaive individuals; LAIV has been shown to offer protection following a single dose in young children. However, two doses of vaccines are recommended for children younger than 9 years of age who have never been immunized with influenza vaccines. In order to produce LAIV to protect against the newly emerged swine origin H1N1 influenza virus, we have produced several 6:2 reassortant candidate vaccine strains that express the hemagglutinin (HA) and neuraminidase (NA) gene segments from influenza virus A/California/4/09 (A/CA/4/09) (H1N1) or A/CA/7/09 (H1N1), as well as the six internal protein gene segments (PB1, PB2, PA, NP, M, and NS) from cold-adapted A/Ann Arbor/6/60 (H2N2) (AA60) virus, which is the master donor virus for all influenza virus A strains in trivalent seasonal LAIV. Initial evaluation of these candidate vaccine strains indicated that they did not replicate as efficiently as seasonal H1N1 influenza vaccine strains in embryonated chicken eggs. In this report, we describe directed modifications of the HA gene segment that improved vaccine yields in eggs, resulting in a number of vaccine candidates that are available for human use.  相似文献   

14.
Influenza virus strains are often pleiomorphic, a characteristic that is largely attributed to specific residues in matrix protein 1 (M1). Although the mechanism by which M1 controls virion morphology has not yet been defined, it is suggested that the M1 interaction with other viral proteins plays an important role. In this study, we rescued recombinant virus WSN-AichiM1 containing the spherical A/WSN/33 (WSN) backbone and the M1 protein from A/Aichi/2/68 (Aichi). Aichi M1 differs from WSN M1 by 7 amino acids but includes those identified to be responsible for filamentous virion formation. Interestingly, Aichi virus produced spherical virions, while WSN-AichiM1 exhibited a long filamentous morphology, as detected by immunofluorescence and electron microscopy. Additional incorporation of Aichi nucleoprotein (NP) but not the hemagglutinin (HA), neuraminidase (NA), or M2 gene to WSN-AichiM1 abrogated filamentous virion formation, suggesting that specific M1-NP interactions affect virion morphology. Further characterization of viruses containing WSN/Aichi chimeric NPs identified residues 214, 217, and 253 of Aichi NP as necessary and sufficient for the formation of spherical virions. NP residues 214 and 217 localize at the minor groove between the two opposite-polarity NP helical strands of viral ribonucleocapsids, and residue 253 also localizes near the surface of the groove. These findings indicate that NP plays a critical role in influenza virus morphology, possibly through its interaction with the M1 layer during virus budding.  相似文献   

15.
A novel subtype of influenza A virus 09H1N1 has rapidly spread across the world. Evolutionary analyses of this virus have revealed that 09H1N1 is a triple reassortant of segments from swine, avian and human influenza viruses. In this study, we investigated factors shaping the codon usage bias of 09H1N1 and carried out cluster analysis of 60 strains of influenza A virus from different subtypes based on their codon usage bias. We discovered that more preferentially used codons of 09H1N1 are A-ended or U-ended, and the intra-genomic codon usage bias of 09H1N1 is quite low. Base composition constraint, dinucleotide biases and translational selection are the main factors influencing the codon usage bias of 09H1N1. At the genome level, we find that the codon usage bias of 09H1N1 is similar to H1N1 (A/swine/Kansas/77778/2007H1N1), H9N2 from Asia, H1N2 from Asia and North America and H3N2 from North America. Our results provide insight for understanding the processes governing evolution, regulation of gene expression, and revealing the evolution of 09H1N1.  相似文献   

16.
The 2009 pandemic influenza virus (pH1N1) is a swine-origin reassortant containing human, avian, and swine influenza genes. We have previously shown that the polymerase complex of the pH1N1 strain A/California/04/2009 (Cal) is highly active in mammalian 293T cells, despite the avian origin of both its PA and PB2. In this study, we analyzed the polymerase residues that are responsible for high pH1N1 polymerase activity in the mammalian host. Characterization of polymerase complexes containing various combinations of Cal and avian influenza virus A/chicken/Nanchang/3-120/01 (H3N2) (Nan) by reporter gene assay indicates that Cal PA, but not PB2, is a major contributing factor to high Cal polymerase activity in 293T cells. In particular, Cal PA significantly activates the otherwise inactive Nan polymerase at 37 and 39°C but not at the lower temperature of 34°C. Further analysis using site-directed mutagenesis showed that the Cal PA residues 85I, 186S, and 336M contribute to enhanced activity of the Cal polymerase. Recombinant A/WSN/33 (H1N1) (WSN) viruses containing Nan NP and polymerase (PA, PB1, PB2) genes with individual mutations in PA at residues 85, 186, and 336 produced higher levels of viral protein than the virus containing wild-type (WT) Nan PA. Interestingly, compared to the WT, the virus containing the 85I mutation grew faster in human A549 cells and the 336M mutation most significantly enhanced pathogenicity in a mouse model, among the three PA mutations tested. Our results suggest that multiple mutations in PA, which were rarely present in previous influenza isolates, are involved in mammalian adaptation and pathogenicity of the 2009 pH1N1.  相似文献   

17.
As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or “mixing vessels”, and swine influenza virus surveillance in China should be given a high priority.  相似文献   

18.
正Dear Editor,As we known,pigs play a vital role as genetic mixing vessels for human and avian influenza viruses as their tracheal epitheliums possess both sialic acid a-2,6-Gal and a-2,3-Gal receptors(Ma et al.2008),and swine influenza viruses occasionally infect humans(Shinde et al.2009).The Eurasian avian-like swine influenza A(H1N1)virus  相似文献   

19.
We examined the molecular basis of virulence of pandemic H1N1/09 influenza viruses by reverse genetics based on two H1N1/09 virus isolates (A/California/04/2009 [CA04] and A/swine/Shandong/731/2009 [SD731]) with contrasting pathogenicities in mice. We found that four amino acid mutations (P224S in the PA protein [PA-P224S], PB2-T588I, NA-V106I, and NS1-I123V) contributed to the lethal phenotype of SD731. In particular, the PA-P224S mutation when combined with PA-A70V in CA04 drastically reduced the virus''s 50% mouse lethal dose (LD50), by almost 1,000-fold.  相似文献   

20.
Influenza A viruses, including H1N1 and H5N1 subtypes, pose a serious threat to public health. Neuraminidase (NA)-related immunity contributes to protection against influenza virus infection. Antibodies to the N1 subtype provide protection against homologous and heterologous H1N1 as well as H5N1 virus challenge. Since neither the strain-specific nor conserved epitopes of N1 have been identified, we generated a panel of mouse monoclonal antibodies (MAbs) that exhibit different reactivity spectra with H1N1 and H5N1 viruses and used these MAbs to map N1 antigenic domains. We identified 12 amino acids essential for MAb binding to the NA of a recent seasonal H1N1 virus, A/Brisbane/59/2007. Of these, residues 248, 249, 250, 341, and 343 are recognized by strain-specific group A MAbs, while residues 273, 338, and 339 are within conserved epitope(s), which allows cross-reactive group B MAbs to bind the NAs of seasonal H1N1 and the 1918 and 2009 pandemic (09pdm) H1N1 as well as H5N1 viruses. A single dose of group B MAbs administered prophylactically fully protected mice against lethal challenge with seasonal and 09pdm H1N1 viruses and resulted in significant protection against the highly pathogenic wild-type H5N1 virus. Another three N1 residues (at positions 396, 397, and 456) are essential for binding of cross-reactive group E MAbs, which differ from group B MAbs in that they do not bind 09pdm H1N1 viruses. The identification of conserved N1 epitopes reveals the molecular basis for NA-mediated immunity between H1N1 and H5N1 viruses and demonstrates the potential for developing broadly protective NA-specific antibody treatments for influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号