首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The localization of ion channels to specific membrane microdomains can impact the functional properties of channels and their role in cellular physiology. We determined the membrane localization of human Kv11.1 (hERG1) alpha-subunit protein, which underlies the rapidly activating, delayed rectifier K(+) current (I(Kr)) in the heart. Immunocytochemistry and membrane fractionation using discontinuous sucrose density gradients of adult canine ventricular tissue showed that Kv11.1 channel protein localized to both the cell surface and T-tubular sarcolemma. Furthermore, density gradient membrane fractionation using detergent (Triton X-100) and non-detergent (OptiPrep) methods from canine ventricular myocytes or HEK293 cells demonstrated that Kv11.1 protein, along with MiRP1 and Kv7.1 (KCNQ1) proteins, localize in cholesterol and sphingolipid enriched membrane fractions. In HEK293 cells, Kv11.1 channels, but not long QT-associated mutant G601S-Kv11.1 channels, also localized to cholesterol and sphingolipid enriched membrane fractions. Depletion of membrane cholesterol from HEK293 cells expressing Kv11.1 channels using methyl-beta-cyclodextrin (MbetaCD) caused a positive shift of the voltage dependence of activation and an acceleration of deactivation kinetics of Kv11.1 current (I(Kv11.1)). Cholesterol loading of HEK293 cells reduced the steep voltage dependence of I(Kv11.1) activation and accelerated the inactivation kinetics of I(Kv11.1). Incubation of neonatal mouse myocytes in MbetaCD also accelerated the deactivation kinetics of I(Kr). We conclude that Kv11.1 protein localizes in cholesterol and sphingolipid enriched membranes and that membrane cholesterol can modulate I(Kv11.1) and I(Kr).  相似文献   

2.
The effect of Kvbeta3 subunit co-expression on currents mediated by the Shaker-related channels Kv1.1 to Kv1.6 in Chinese hamster ovary (CHO) cells was studied with patch-clamp techniques. In the presence of Kvbeta3, differences in the voltage dependence of activation for Kv1.1, Kv1.3 and Kv1.6 were detected, but not for Kv1.2- and Kv1.4-mediated currents. Co-expression of Kvbeta3 did not cause a significant increase in current density for any of the tested channels. In contrast to previous studies in Xenopus oocyte expression system, Kvbeta3 confered a rapid inactivation to all except Kv1.3 channels. Also, Kv1.6 channels that possess an N-type inactivation prevention (NIP) domain for Kvbeta1.1, inactivated rapidly when co-expressed with Kvbeta3. Onset and recovery kinetics of channel inactivation distinctly differed for the various Kv1alpha/Kvbeta3 subunit combinations investigated in this study. The results indicate that the choice of expression system may critically determine Kvbeta3 inactivating activity. This suggests that the presence of an inactivating domain and a receptor in a channel pore, although necessary, may not be sufficient for an effective rapid N-type inactivation of Kv1 channels in heterologous expression systems.  相似文献   

3.
It is well documented that nifedipine, a commonly used dihydropyridine Ca2+ channel blocker, has also significant interactions with voltage-gated K+ (Kv) channels. But to date, little is known whether nifedipine exerted an action on Kv2.1 channels, a member of the Shab subfamily with slow inactivation. In the present study, we explored the effects of nifedipine on rat Kv2.1 channels expressed in HEK293 cells. Data from whole-cell recording showed that nifedipine substantially reduced Kv2.1 currents with the IC50 value of 37.5 ± 5.7 μM and delayed the time course of activation without effects on the activation curve. Moreover, this drug also significantly shortened the duration of inactivation and deactivation of Kv2.1 currents in a voltage-dependent manner. Interestingly, the half-maximum inactivation potential (V 1/2) of Kv2.1 currents was -11.4 ± 0.9 mV in control and became -38.5 ± 0.4 mV after application of 50 μM nifedipine. The large hyperpolarizing shift (27 mV) of the inactivation curve has not been reported previously and may result in more inactivation for outward delayed rectifier K+ currents mediated by Kv2.1 channels at repolarization phases. The Y380R mutant significantly increased the binding affinity of nifedipine to Kv2.1 channels, suggesting an interaction of nifedipine with the outer mouth region of this channel. The data present here will be helpful to understand the diverse effects exerted by nifedipine on various Kv channels.  相似文献   

4.
There is growing evidence indicating that the pore structure of voltage-gated ion channels (VGICs) influences gating besides their conductance. Regarding low voltage-activated (LVA) Ca2+ channels, it has been demonstrated that substitutions of the pore aspartate (D) by a glutamate (D-to-E substitution) in domains III and IV alter channel gating properties such as a positive shift in the channel activation voltage dependence. In the present report, we evaluated the effects of E-to-D substitution in domains I and II on the CaV3.1 channel gating properties. Our results indicate that substitutions in these two domains differentially modify the gating properties of CaV3.1 channels. The channel with a single mutation in domain I (DEDD) presented slower activation and faster inactivation kinetics and a slower recovery from inactivation, as compared with the WT channel. In contrast, the single mutant in domain II (EDDD) presented a small but significant negative shift of activation voltage dependence with faster activation and slower inactivation kinetics. Finally, the double mutant channel (DDDD) presented somehow intermediate properties with respect to the two single mutants but with fastest deactivation kinetics. Overall, our results indicate that single amino acid modification of the selectivity filter of LVA Ca2+ channels in distinct domains differentially influence their gating properties, supporting a pore pseudo-symmetry.  相似文献   

5.
The expression and functional role of ether-à-go-go-related gene (erg) K+ channels were examined in the bovine epididymal duct. Sperm transit through the epididymal duct relies on spontaneous phasic contractions (SC) of the peritubular smooth muscle wall. Isometric tension studies revealed SC-enhancing effects of the erg channel blockers E-4031, dofetilide, cisapride, and haloperidol and SC-suppressing effects of the activator NS-1643. In the corpus epididymidis, EC50 values of 32 nM and 8.3 microM were determined for E-4031 and NS-1643, respectively. E-4031 was also able to elicit contraction in epithelium-denuded corpus segments, which lacked SC. In the cauda region, E-4031 and NS-1643 exerted effects on agonist-induced contraction similar to those observed in the proximal duct. Experiments with nifedipine and thapsigargin suggested that the excitatory effects of E-4031 depended mainly on external calcium influx and not on intracellular calcium release. Western blot and RT-PCR assays revealed the expression of both, erg1a and erg1b, in all duct regions. Because erg1b appears to predominate in the epididymal duct, patch-clamp experiments were performed on heterologously expressed erg1b channels to investigate the sensitivity of this splice variant to NS-1643. In contrast to its effects on erg1a, NS-1643 induced a concentration-dependent current increase mainly due to a marked leftward shift in erg1b channel activation by approximately 30 mV at 10 microM, explaining the inhibitory effect of the drug on epididymal SC. In summary, these data provide strong evidence for a physiological role of erg1 channels in regulating epididymal motility patterns.  相似文献   

6.
The effects of genistein, a protein tyrosine kinase (PTK) inhibitor, on voltage-dependent K(+) (Kv) 4.3 channel were examined using the whole cell patch-clamp techniques. Genistein inhibited Kv4.3 in a reversible, concentration-dependent manner with an IC(50) of 124.78 μM. Other PTK inhibitors (tyrphostin 23, tyrphostin 25, lavendustin A) had no effect on genistein-induced inhibition of Kv4.3. Orthovanadate, an inhibitor of protein phosphatases, did not reverse the inhibition of Kv4.3 by genistein. We also tested the effects of two inactive structural analogs: genistin and daidzein. Whereas Kv4.3 was unaffected by genistin, daidzein inhibited Kv4.3, albeit with a lower potency. Genistein did not affect the activation and inactivation kinetics of Kv4.3. Genistein-induced inhibition of Kv4.3 was voltage dependent with a steep increase over the channel opening voltage range. In the full-activation voltage range positive to +20 mV, no voltage-dependent inhibition was found. Genistein had no significant effect on steady-state activation, but shifted the voltage dependence of the steady-state inactivation of Kv4.3 in the hyperpolarizing direction in a concentration-dependent manner. The K(i) for the interaction between genistein and the inactivated state of Kv4.3, which was estimated from the concentration-dependent shift in the steady-state inactivation curve, was 1.17 μM. Under control conditions, closed-state inactivation was fitted to a single exponential function, and genistein accelerated closed-state inactivation. Genistein induced a weak use-dependent inhibition. These results suggest that genistein directly inhibits Kv4.3 by interacting with the closed-inactivated state of Kv4.3 channels. This effect is not mediated via inhibition of the PTK activity, because other types of PTK inhibitors could not prevent the inhibitory action of genistein.  相似文献   

7.
Kv4 channels mediate the somatodendritic A-type K+ current (I(SA)) in neurons. The availability of functional Kv4 channels is dynamically regulated by the membrane potential such that subthreshold depolarizations render Kv4 channels unavailable. The underlying process involves inactivation from closed states along the main activation pathway. Although classical inactivation mechanisms such as N- and P/C-type inactivation have been excluded, a clear understanding of closed-state inactivation in Kv4 channels has remained elusive. This is in part due to the lack of crucial information about the interactions between gating charge (Q) movement, activation, and inactivation. To overcome this limitation, we engineered a charybdotoxin (CTX)-sensitive Kv4.2 channel, which enabled us to obtain the first measurements of Kv4.2 gating currents after blocking K+ conduction with CTX (Dougherty and Covarrubias. 2006J. Gen. Physiol. 128:745-753). Here, we exploited this approach further to investigate the mechanism that links closed-state inactivation to slow Q-immobilization in Kv4 channels. The main observations revealed profound Q-immobilization at steady-state over a range of hyperpolarized voltages (-110 to -75 mV). Depolarization in this range moves <5% of the observable Q associated with activation and is insufficient to open the channels significantly. The kinetics and voltage dependence of Q-immobilization and ionic current inactivation between -153 and -47 mV are similar and independent of the channel's proximal N-terminal region (residues 2-40). A coupled state diagram of closed-state inactivation with a quasi-absorbing inactivated state explained the results from ionic and gating current experiments globally. We conclude that Q-immobilization and closed-state inactivation at hyperpolarized voltages are two manifestations of the same process in Kv4.2 channels, and propose that inactivation in the absence of N- and P/C-type mechanisms involves desensitization to voltage resulting from a slow conformational change of the voltage sensors, which renders the channel's main activation gate reluctant to open.  相似文献   

8.
The voltage-gated K(+) (Kv) channel subunit Kv6.4 does not form functional homotetrameric channels but co-assembles with Kv2.1 to form functional Kv2.1/Kv6.4 heterotetrameric channels. Compared to Kv2.1 homotetramers, Kv6.4 exerts a ~40 mV hyperpolarizing shift in the voltage-dependence of Kv2.1/Kv6.4 channel inactivation, without a significant effect on activation gating. However, the underlying mechanism of this Kv6.4-induced modulation of Kv2.1 channel inactivation, and whether the Kv6.4 subunit participates in the voltage-dependent gating of heterotetrameric channels is not well understood. Here we report distinct gating charge movement of Kv2.1/Kv6.4 heterotetrameric channels, compared to Kv2.1 homotetramers, as revealed by gating current recordings from mammalian cells expressing these channels. The gating charge movement of Kv2.1/Kv6.4 heterotetrameric channels displayed an extra component around the physiological K(+) equilibrium potential, characterized by a second sigmoidal relationship of the voltage-dependence of gating charge movement. This distinct gating charge displacement reflects movement of the Kv6.4 voltage-sensing domain and has a voltage-dependency that matches the hyperpolarizing shift in Kv2.1/Kv6.4 channel inactivation. These results provide a mechanistic basis for the modulation of Kv2.1 channel inactivation gating kinetics by silent Kv6.4 subunits.  相似文献   

9.
The S4 transmembrane domain in Shaker (Kv1) voltage-sensitive potassium channels has four basic residues (R1–R4) that are responsible for carrying the majority of gating charge. In Kv4 channels, however, R1 is replaced by a neutral valine at position 287. Among other differences, Kv4 channels display prominent closed state inactivation, a mechanism which is minimal in Shaker. To determine if the absence of R1 is responsible for important variation in gating characteristics between the two channel types, we introduced the V287R mutant into Kv4.3 and analyzed its effects on several voltage sensitive gating transitions. We found that the mutant increased the voltage sensitivity of steady-state activation and altered the kinetics of activation and deactivation processes. Although the kinetics of macroscopic inactivation were minimally affected, the characteristics of closed-state inactivation and recovery from open and closed inactivated states were significantly altered. The absence of R1 can only partially account for differences in the effective voltage sensitivity of gating between Shaker and Kv4.3. These results suggest that the S4 domain serves an important functional role in Kv4 channel activation and deactivation processes, and also those of closed-state inactivation and recovery.  相似文献   

10.
Voltage-gated potassium channels related to the Shal gene of Drosophila (Kv4 channels) mediate a subthreshold-activating current (ISA) that controls dendritic excitation and the backpropagation of action potentials in neurons. Kv4 channels also exhibit a prominent low voltage–induced closed-state inactivation, but the underlying molecular mechanism is poorly understood. Here, we examined a structural model in which dynamic coupling between the voltage sensors and the cytoplasmic gate underlies inactivation in Kv4.2 channels. We performed an alanine-scanning mutagenesis in the S4-S5 linker, the initial part of S5, and the distal part of S6 and functionally characterized the mutants under two-electrode voltage clamp in Xenopus oocytes. In a large fraction of the mutants (>80%) normal channel function was preserved, but the mutations influenced the likelihood of the channel to enter the closed-inactivated state. Depending on the site of mutation, low-voltage inactivation kinetics were slowed or accelerated, and the voltage dependence of steady-state inactivation was shifted positive or negative. Still, in some mutants these inactivation parameters remained unaffected. Double mutant cycle analysis based on kinetic and steady-state parameters of low-voltage inactivation revealed that residues known to be critical for voltage-dependent gate opening, including Glu 323 and Val 404, are also critical for Kv4.2 closed-state inactivation. Selective redox modulation of corresponding double-cysteine mutants supported the idea that these residues are involved in a dynamic coupling, which mediates both transient activation and closed-state inactivation in Kv4.2 channels.  相似文献   

11.
Inactivation is an intrinsic property of numerous voltage-gated K+ (Kv) channels and can occur by N-type or/and C-type mechanisms. N-type inactivation is a fast, voltage independent process, coupled to activation, with each inactivation particle of a tetrameric channel acting independently. In N-type inactivation, a single inactivation particle is necessary and sufficient to occlude the pore. C-type inactivation is a slower process, involving the outermost region of the pore and is mediated by a concerted, highly cooperative interaction between all four subunits. Inactivation of Kv7.1 channels does not exhibit the hallmarks of N- and C-type inactivation. Inactivation of WT Kv7.1 channels can be revealed by hooked tail currents that reflects the recovery from a fast and voltage-independent inactivation process. However, several Kv7.1 mutants such as the pore mutant L273F generate an additional voltage-dependent slow inactivation. The subunit interactions during this slow inactivation gating remain unexplored. The goal of the present study was to study the nature of subunit interactions along Kv7.1 inactivation gating, using concatenated tetrameric Kv7.1 channel and introducing sequentially into each of the four subunits the slow inactivating pore mutation L273F. Incorporating an incremental number of inactivating mutant subunits did not affect the inactivation kinetics but slowed down the recovery kinetics from inactivation. Results indicate that Kv7.1 inactivation gating is not compatible with a concerted cooperative process. Instead, adding an inactivating subunit L273F into the Kv7.1 tetramer incrementally stabilizes the inactivated state, which suggests that like for activation gating, Kv7.1 slow inactivation gating is not a concerted process.  相似文献   

12.
13.
Voltage-dependent potassium channel trafficking and localization are regulated by proteins of the cytoskeleton, but the mechanisms by which these occur are still unclear. Using human embryonic kidney (HEK) cells as a heterologous expression system, we tested the role of the actin cytoskeleton in modulating the function of Kv4.2 channels. Pretreatment (>or=1 h) of HEK cells with 5 microM cytochalasin D to disrupt the actin microfilaments greatly augmented whole cell Kv4.2 currents at potentials positive to -20 mV. However, no changes in the voltage dependence of activation and inactivation of macroscopic currents were observed to account for this increase. Similarly, single channel recordings failed to reveal any significant changes in the single channel conductance, open probability, and kinetics. However, the mean patch current was increased from 0.9 +/- 0.2 pA in control to 6.7 +/- 3.0 pA in the presence of cytochalasin D. Imaging experiments revealed a clear increase in the surface expression of the channels and the appearance of "bright spot" features, suggesting that large numbers of channels were being grouped at specific sites. Our data provide clear evidence that increased numbers and altered distribution of Kv4.2 channels at the cell surface are primarily the result of reorganization of the actin cytoskeleton.  相似文献   

14.
Scorpion toxin Ctri9577, as a potent Kv1.3 channel blocker, is a new member of the α-KTx15 subfamily which are a group of blockers for Kv4.x potassium channels. However, the pharmacological function of Ctri9577 for Kv4.x channels remains unknown. Scorpion toxin Ctri9577 was found to effectively inhibit Kv4.3 channel currents with IC50 value of 1.34 ± 0.03 μM. Different from the mechanism of scorpion toxins as the blocker recognizing channel extracellular pore entryways, Ctri9577 was a novel gating modifier affecting voltage dependence of activation, steady-state inactivation, and the recovery process from the inactivation of Kv4.3 channel. However, Ctri9755, as a potent Kv1.3 channel blocker, was found not to affect voltage dependence of activation of Kv1.3 channel. Interestingly, pharmacological experiments indicated that 1 μM Ctri9755 showed less inhibition on Kv4.1 and Kv4.2 channel currents. Similar to the classical gating modifier of spider toxins, Ctri9577 was shown to interact with the linker between the transmembrane S3 and S4 helical domains through the mutagenesis experiments. To the best of our knowledge, Ctri9577 was the first gating modifier of potassium channels among scorpion toxin family, and the first scorpion toxin as both gating modifier and blocker for different potassium channels. These findings further highlighted the structural and functional diversity of scorpion toxins specific for the potassium channels.  相似文献   

15.
The voltage-gated potassium channel, Kv1.3, which is highly expressed in a number of immune cells, contains concensus sites for phosphorylation by protein kinase C (PKC). In lymphocytes, this channel is involved in proliferation—through effects on membrane potential, Ca2+ signalling, and interleukin-2 secretion—and in cytotoxic killing and volume regulation. Because PKC activation (as well as increased intracellular Ca2+) is required for T-cell proliferation, we have studied the regulation of Kv1.3 current by PKC in normal (nontransformed) human T lymphocytes. Adding intracellular ATP to support phosphorylation, shifted the voltage dependence of activation by +8 mV and inactivation by +17 mV, resulting in a 230% increase in the window current. Inhibiting ATP production and action with ``death brew' (2-deoxyglucose, adenylylimidodiphosphate, carbonyl cyanide-m-chlorophenyl hydrazone) reduced the K+ conductance (G K ) by 41 ± 2%. PKC activation by 4β-phorbol 12,13-dibutyrate, increased G K by 69 ± 6%, and caused a positive shift in activation (+9 mV) and inactivation (+9 mV), which resulted in a 270% increase in window current. Conversely, several PKC inhibitors reduced the current. Diffusion into the cell of inhibitory pseudosubstrate or substrate peptides reduced G K by 43 ± 5% and 38 ± 8%, respectively. The specific PKC inhibitor, calphostin C, potently inhibited Kv1.3 current in a dose- and light-dependent manner (IC50∼ 250 nm). We conclude that phosphorylation by PKC upregulates Kv1.3 channel activity in human lymphocytes and, as a result of shifts in voltage dependence, this enhancement is especially prevalent at physiologically relevant membrane potentials. This increased Kv1.3 current may help maintain a negative membrane potential and a high driving force for Ca2+ entry in the presence of activating stimuli. Received: 12 July 1996/Revised: 21 October 1996  相似文献   

16.
The time course of inactivation of voltage‐activated potassium (Kv) channels is an important determinant of the firing rate of neurons. In many Kv channels highly unsaturated lipids as arachidonic acid, docosahexaenoic acid and anandamide can induce fast inactivation. We found that these lipids interact with hydrophobic residues lining the inner cavity of the pore. We analysed the effects of these lipids on Kv1.1 current kinetics and their competition with intracellular tetraethylammonium and Kvβ subunits. Our data suggest that inactivation most likely represents occlusion of the permeation pathway, similar to drugs that produce ‘open‐channel block’. Open‐channel block by drugs and lipids was strongly reduced in Kv1.1 channels whose amino acid sequence was altered by RNA editing in the pore cavity, and in Kv1.x heteromeric channels containing edited Kv1.1 subunits. We show that differential editing of Kv1.1 channels in different regions of the brain can profoundly alter the pharmacology of Kv1.x channels. Our findings provide a mechanistic understanding of lipid‐induced inactivation and establish RNA editing as a mechanism to induce drug and lipid resistance in Kv channels.  相似文献   

17.
We characterized the effects of intracellular Mg2+ (Mg2+i) on potassium currents mediated by the Kv1.5 and Kv2.1 channels expressed in Xenopus oocytes. Increase in Mg2+i caused a voltage-dependent block of the current amplitude, apparent acceleration of the current kinetics (explained by a corresponding shift in the steady-state activation) and leftward shifts in activation and inactivation dependencies for both channels. The voltage-dependent block was more potent for Kv2.1 [dissociation constant at 0 mV, Kd(0), was ~70 mM and the electric distance of the Mg2+ binding site, , was 0.2] than for the Kv1.5 channel [Kd(0)~40 mM and =0.1]. Similar shifts in the voltage-dependent parameters for both channels were described by the Gouy-Chapman formalism with the negative charge density of 1 e/100 Å2. Additionally, Mg2+i selectively reduced a non-inactivating current and increased the accumulation of inactivation of the Kv1.5, but not the Kv2.1 channel. A potential functional role of the differential effects of Mg2+i on the Kv channels is discussed.  相似文献   

18.
We examined the effects of the selective serotonin reuptake inhibitor (SSRI) sertraline on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Sertraline decreased the Kv channel current in a dose-dependent manner, with an IC50 value of 0.18 μM and a slope value (Hill coefficient) of 0.61. Although the application of 1 μM sertraline did not affect the steady-state activation curves, sertraline caused a significant, negative shift in the inactivation curves. Pretreatment with another SSRI, paroxetine, had no significant effect on Kv currents and did not alter the inhibitory effects of sertraline on Kv currents. From these results, we concluded that sertraline dose-dependently inhibited Kv currents independently of serotonin reuptake inhibition by shifting inactivation curves to a more negative potential.  相似文献   

19.
Kv4 potassium channels undergo rapid inactivation but do not seem to exhibit the classical N-type and C-type mechanisms present in other Kv channels. We have previously hypothesized that Kv4 channels preferentially inactivate from the preopen closed state, which involves regions of the channel that contribute to the internal vestibule of the pore. To further test this hypothesis, we have examined the effects of permeant ions on gating of three Kv4 channels (Kv4.1, Kv4.2, and Kv4.3) expressed in Xenopus oocytes. Rb+ is an excellent tool for this purpose because its prolonged residency time in the pore delays K+ channel closing. The data showed that, only when Rb+ carried the current, both channel closing and the development of macroscopic inactivation are slowed (1.5- to 4-fold, relative to the K+ current). Furthermore, macroscopic Rb+ currents were larger than K+ currents (1.2- to 3-fold) as the result of a more stable open state, which increases the maximum open probability. These results demonstrate that pore occupancy can influence inactivation gating in a manner that depends on how channel closing impacts inactivation from the preopen closed state. By examining possible changes in ionic selectivity and the influence of elevating the external K+ concentration, additional experiments did not support the presence of C-type inactivation in Kv4 channels.  相似文献   

20.
Human ether-à-go-go-related gene (HERG) encoded K+ channels were expressed in Chinese hamster ovary (CHO-K1) cells and studied by whole-cell voltage clamp in the presence of varied extracellular Ca2+ concentrations and physiological external K+. Elevation of external Ca2+ from 1.8 to 10 mM resulted in a reduction of whole-cell K+ current amplitude, slowed activation kinetics, and an increased rate of deactivation. The midpoint of the voltage dependence of activation was also shifted +22.3 +/- 2.5 mV to more depolarized potentials. In contrast, the kinetics and voltage dependence of channel inactivation were hardly affected by increased extracellular Ca2+. Neither Ca2+ screening of diffuse membrane surface charges nor open channel block could explain these changes. However, selective changes in the voltage-dependent activation, but not inactivation gating, account for the effects of Ca2+ on Human ether-à-go-go-related gene current amplitude and kinetics. The differential effects of extracellular Ca2+ on the activation and inactivation gating indicate that these processes have distinct voltage-sensing mechanisms. Thus, Ca2+ appears to directly interact with externally accessible channel residues to alter the membrane potential detected by the activation voltage sensor, yet Ca2+ binding to this site is ineffective in modifying the inactivation gating machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号