首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.  相似文献   

2.
3.
Lanfang Yang  Zucong Cai 《Plant and Soil》2006,283(1-2):265-274
The effect of photosynthesis on N2O emission from soil was investigated by shading soybean (Gycline max. L) plant at flowering, pod-setting and grain-filling stages. The results showed that by stopping photosynthesis through shading the plants stimulated N2O emission significantly at flowering stage and pod-setting stage, and suppressed N2O emission dramatically at grain-filling stage. At flowering stage, soybean species seem to rely mainly on fertilizer N and shaded plants decreased the N uptake. Interaction between the relative increase in available N for N2O production by shading and the presence of root exudates promoted N transformation (nitrification/denitrification) and N2O emission. At pod-setting stage, the available soil nitrogen seems to be a critical limiting factor and without substantial release of symbiotically fixed N through plant roots, resulted in a weak effect of shading on N2O emission. At grain-filling stage, available N for N2O production was derived from symbiotically fixed N and was greatly affected by photosynthesis. These results indicated that the effect of soybean growth on N2O emission from soil varies with plant growth stages as available N for N2O production is mainly from fertilizer N and organic mineralization during the early growth of soybean plants, while N2O emission is controlled by the quantity and perhaps also the quality of root exudates, which is closely related with plant photosynthesis in the late season of soybean growth.  相似文献   

4.
5.
Nitrogen (N) deposition has increased significantly globally since the industrial revolution. Previous studies on the response of gaseous emissions to N deposition have shown controversial results, pointing to the system-specific effect of N addition. Here we conducted an N addition experiment in a temperate natural forest in northeastern China to test how potential changes in N deposition alter soil N2O emission and its sources from nitrification and denitrification. Soil N2O emission was measured using closed chamber method and a separate incubation experiment using acetylene inhibition method was carried out to determine denitrification fluxes and the contribution of nitrification and denitrification to N2O emissions between Jul. and Oct. 2012. An NH4NO3 addition of 50 kg N/ha/yr significantly increased N2O and N2 emissions, but their “pulse emission” induced by N addition only lasted for two weeks. Mean nitrification-derived N2O to denitrification-derived N2O ratio was 0.56 in control plots, indicating higher contribution of denitrification to N2O emissions in the study area, and this ratio was not influenced by N addition. The N2O to (N2+N2O) ratio was 0.41–0.55 in control plots and was reduced by N addition at one sampling time point. Based on this short term experiment, we propose that N2O and denitrification rate might increase with increasing N deposition at least by the same fold in the future, which would deteriorate global warming problems.  相似文献   

6.
Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.  相似文献   

7.
The ocean is a net source of N2O, a potent greenhouse gas and ozone-depleting agent. However, the removal of N2O via microbial N2O consumption is poorly constrained and rate measurements have been restricted to anoxic waters. Here we expand N2O consumption measurements from anoxic zones to the sharp oxygen gradient above them, and experimentally determine kinetic parameters in both oxic and anoxic seawater for the first time. We find that the substrate affinity, O2 tolerance, and community composition of N2O-consuming microbes in oxic waters differ from those in the underlying anoxic layers. Kinetic parameters determined here are used to model in situ N2O production and consumption rates. Estimated in situ rates differ from measured rates, confirming the necessity to consider kinetics when predicting N2O cycling. Microbes from the oxic layer consume N2O under anoxic conditions at a much faster rate than microbes from anoxic zones. These experimental results are in keeping with model results which indicate that N2O consumption likely takes place above the oxygen deficient zone (ODZ). Thus, the dynamic layer with steep O2 and N2O gradients right above the ODZ is a previously ignored potential gatekeeper of N2O and should be accounted for in the marine N2O budget.Subject terms: Water microbiology, Biogeochemistry, Microbial ecology  相似文献   

8.
Spatial variability in hydrological flowpaths and nitrate-removal processes complicates the overall assessment of riparian buffer zone functioning in terms of water quality improvement as well as enhancement of the greenhouse effect by N2O emissions. In this study, we evaluated denitrification and nitrous oxide emission in winter and summer along two groundwater flowpaths in a nitrate-loaded forested riparian buffer zone and related the variability in these processes to controlling soil factors. Denitrification and emissions of N2O were measured using flux chambers and incubation experiments. In winter, N2O emissions were significantly higher (12.4 mg N m−2 d−1) along the flowpath with high nitrate removal compared with the flowpath with low nitrate removal (2.58 mg N m−2 d−1). In summer a reverse pattern was observed, with higher N2O emissions (13.6 mg N m−2 d−1) from the flowpath with low nitrate-removal efficiencies. Distinct spatial patterns of denitrification and N2O emission were observed along the high nitrate-removal transect compared to no clear pattern along the low nitrate-removal transect, where denitrification activity was very low. Results from this study indicate that spots with high nitrate-removal efficiency also contribute significantly to an increased N2O emission from riparian zones. Furthermore, we conclude that high variability in N2O:N2 ratio and weak relationships with environmental conditions limit the value of this ratio as a proxy to evaluate the environmental consequences of riparian buffer zones.  相似文献   

9.
基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响   总被引:86,自引:5,他引:86  
通过田间小区试验研究了氮肥一次基施对高肥力土壤上冬小麦产量,吸氮量及氮肥利用率的影响,旨在了解高肥力土训上减少基肥氮的可行性,结果表明,高肥力土壤上冬小麦产量对氮肥的反应不明显,而施用氮肥显著增加了冬小麦吸氮量,根据差值法计算结果,当施氮量为75,112.5和150kg/hm^2时冬小麦的氮肥利用率分别为16.0%,14.5%和13.5%,表明多达84%-86.5%以上的基肥氮未被作物吸收利用,氮平衡计算的结果进一步表明,未被当季小麦利用的肥料氮主要以无机氮的形式残留于0-1m土体中,当施氮量分别为75,112.5和150kg/hm2时氮肥的土壤残留率依次为83.3%,46.0%和58.8%,而相应的表观损失率为0.5%,38.9%和19.0%,由此可见,在高肥力土壤上应严格控制基肥氮的用量或不施基肥,否则将造成氮素资源的大量浪费。  相似文献   

10.
11.
苏南丘陵区稻田氧化亚氮的排放特点   总被引:9,自引:0,他引:9  
氧化亚氮(N2O)是一种重要的温室气体,又能破坏臭氧层[1,2]。土壤是大气N2O的主要来源[3],研究结果表明,我国1990年排放的N2O有9236%来自于农田土壤。各种类型稻田N2O-N排放量占化肥施氮量的0031%~048%[4,5],稻...  相似文献   

12.

Despite its ecological importance, essential aspects of microbial N2O reduction—such as the effect of O2 availability on the N2O sink capacity of a community—remain unclear. We studied N2O vs. aerobic respiration in a chemostat culture to explore (i) the extent to which simultaneous respiration of N2O and O2 can occur, (ii) the mechanism governing the competition for N2O and O2, and (iii) how the N2O-reducing capacity of a community is affected by dynamic oxic/anoxic shifts such as those that may occur during nitrogen removal in wastewater treatment systems. Despite its prolonged growth and enrichment with N2O as the sole electron acceptor, the culture readily switched to aerobic respiration upon exposure to O2. When supplied simultaneously, N2O reduction to N2 was only detected when the O2 concentration was limiting the respiration rate. The biomass yields per electron accepted during growth on N2O are in agreement with our current knowledge of electron transport chain biochemistry in model denitrifiers like Paracoccus denitrificans. The culture’s affinity constant (KS) for O2 was found to be two orders of magnitude lower than the value for N2O, explaining the preferential use of O2 over N2O under most environmentally relevant conditions.

  相似文献   

13.
Escherichia coli carrying the entire nif gene cluster from Klebsiella pneumoniae on a multicopy plasmid becomes more O2-resistant in a N-free medium as a result of the integration of the nif gene cluster into the chromosome and the loss of the plasmid (H.Iwahashi and J.Someya, Biochem. Biophys. Res. Comm. 1990, 168: 288–294). Our purpose is to characterize the physiological reason why the strain became O2-resistant by measuring the levels of nif proteins in cells under microaerobic conditions. The O2-resistant strain had a higher amount of NifH and a lower amount of NifL under microaerobic conditions (compared to that under anaerobic conditions), while the parent strain showed the opposite characteristics. Thus, the biochemical mechanism of the O2-resistant strain is attributed to the strain's ability to synthesize and maintain a high amount of NifH and a low amount of NifL under microaerobic conditions. © Rapid Science Ltd. 1998  相似文献   

14.
Temperature responses of denitrifying microbes likely play a governing role in the production and consumption of N2O. We investigated temperature effects on denitrifier communities and their potential to produce N2O and N2 by incubating grassland soils collected in multiple seasons at four temperatures with 15N-enriched NO3 ? for ~24 h. We quantified [N2O] concentration across time, estimated its production and reduction to N2, and quantified relative abundance of genes responsible for N2O production (cnorB) and reduction (nosZ). In all seasons, net N2O production was positively linked to incubation temperature, with highest estimates of net and gross N2O production in late spring soils. N2O dynamics were tightly coupled to changes in denitrifier community structure, which occurred on both seasonal and incubation time scales. We observed increases in nosZ abundance with increasing incubation temperature after 24 h, and relatively larger increases in cnorB abundance from winter to late June. The difference between incubation and in situ temperature was a robust predictor of cnorB:nosZ. These data provide convincing evidence that short-term increases in temperature can induce remarkably rapid changes in community structure that increase the potential for reduction of N2O to N2, and that seasonal adaptation of denitrifying communities is linked to seasonal changes in potential N2O production, with warmer seasons linked to large increases in N2O production potential. This work helps explain observations of high spatial and temporal variation in N2O effluxes, and highlights the importance of temperature as an influence on denitrification enzyme kinetics, denitrifier physiology and community adaptations, and associated N2O efflux and reduction.  相似文献   

15.
The aim of the present article is to provide a summary of the epigenetic modifications that might occur in children exposed to heavy metals pollutants. It is known that children are more susceptible to environmental pollutants, because their detoxification enzymes are less competent, and this may lead to alterations in chromatin structure or of DNA causing, in turn, epigenetic modifications. Little is currently known about the long-term effects of these changes when occur early in childhood, none-theless there are ethics and practical concerns that make the assessment of DNA modifications difficult to perform in large-scale.  相似文献   

16.
Exposure of CD-1 mice to subanesthetic partial pressures of N2O (0.5 atm) or N2 (10-20 atm) for periods up to 14 days results in up to 40% decreases in the mean threshold pressure eliciting type I high-pressure neurological syndrome (HPNS) seizures, and in increases up to 38% in the N2 partial pressure producing anesthesia. For all combinations of preexposure time, N2 partial pressure, as well as identity of the conditioning gas the relations between the convulsion threshold pressure (Pc) and the anesthesia N2 pressure (Pa) appear to be uniquely correlated by the equation Pa = 54.5 - 0.2(Pc - 60)1.2. The potency of N2O with respect to these habituation phenomena is between 28 and 33 times higher than that of N2, depending on the aspects compared. Evidence is presented indicating that after 14 days of habituation the animals have attained between 75 and 85% compensation for the anesthetic as well as the anticonvulsant effects of the conditioning gas. The bearing of the results on the problem of the nature of the antagonism between inert gas narcotic agents and high pressure and on the hypothesis that habituation tends toward restoration of isofluidity (or some analogous normalization process) are discussed.  相似文献   

17.
As genomic data for bacteria are unraveled at an increasing speed, there is a need for more efficient and refined techniques to characterize metabolic traits. The regulatory apparatus for denitrification, for instance, has been explored extensively for type strains, but we lack refined observations of how these and wild type denitrifiers respond metabolically to changing environmental conditions. There is a need for new "phenomic" approaches, and the present paper describes one; an automated incubation system for the study of gas kinetics in 15 parallel bacterial cultures. An autosampler with a peristaltic pump takes samples from the headspace, and replaces the sampled gas with He by reversing the pump. The sample flows through the injector of a micro GC (for determination of N(2), O(2), CH(4), CO(2), N(2)O) to the inlet of a chemoluminescence NO analyzer. The linear range for NO is 0.5-10(4) ppmv (CV=2%, detection limit 0.2 ppmv). The gas leakage of N(2) into the system is low and reproducible, allowing the quantification of N(2) production (in flasks with He+O(2) atmosphere) with a detection limit of 150-200 nmol N(2) for a single time increment. The gas loss by each sampling is taken into account, securing mass balance for all gases, thus allowing accurate estimation of electron flows to the various terminal acceptors (O(2), NO(2)(-), NO, N(2)O) throughout the culture's depletion of O(2) and NO(x). We present some experimental results with Agrobacterium tumefaciens, Paracoccus denitrificans and denitrifying communities, demonstrating the system's potential for unraveling contrasting patterns of denitrification gene expression as a function of concentrations of O(2) and NO in the medium.  相似文献   

18.
Quantification of harmful nitrous oxide (N(2)O) emissions from soils is essential for mitigation measures. An important N(2)O producing and reducing process in soils is denitrification, which shows deceased rates at low pH. No clear relationship between N(2)O emissions and soil pH has yet been established because also the relative contribution of N(2)O as the denitrification end product decreases with pH. Our aim was to show the net effect of soil pH on N(2)O production and emission. Therefore, experiments were designed to investigate the effects of pH on NO(3)(-) reduction, N(2)O production and reduction and N(2) production in incubations with pH values set between 4 and 7. Furthermore, field measurements of soil pH and N(2)O emissions were carried out. In incubations, NO(3)(-) reduction and N(2) production rates increased with pH and net N(2)O production rate was highest at pH 5. N(2)O reduction to N(2) was halted until NO(3)(-) was depleted at low pH values, resulting in a built up of N(2)O. As a consequence, N(2)O:N(2) production ratio decreased exponentially with pH. N(2)O reduction appeared therefore more important than N(2)O production in explaining net N(2)O production rates. In the field, a negative exponential relationship for soil pH against N(2)O emissions was observed. Soil pH could therefore be used as a predictive tool for average N(2)O emissions in the studied ecosystem. The occurrence of low pH spots may explain N(2)O emission hotspot occurrence. Future studies should focus on the mechanism behind small scale soil pH variability and the effect of manipulating the pH of soils.  相似文献   

19.
20.
China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long‐term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate‐induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P < 0.001). In contrast, the potential denitrification (D) was found to be a linear function of oxic respiration (R), and the ratio D/R was largely unaffected by soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH‐control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号