首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Our research concerns the immunohistochemical localization of EGF and IGF-I receptors in the tooth germ, using monoclonal antibodies. The results show that in the early phases of human tooth development EGF and IGF-I receptors are present. At bud stage both receptors are localized at dental laminae level, in some epithelial cells of the tooth bud and in some mesenchymal cells. At cap stage the receptors are present in the outer and inner enamel epithelium, and in some cells of stellate reticulum. As far as concerns the mesenchymal cells, some cells of dental papilla in contact with enamel organ, are intensely positive. The immunopositivity is present also in some mesenchymal cells at follicular level. At late cap stage and at early bell stage receptors are not present at inner enamel epithelium level but they can be detectable in the mesenchyma of dental papilla and in some cells of the follicle. On the basis of these results it may be hypothesized that EGF and IGF-I can act as growth factors in the modulation of cellular proliferation and differentiation during the human tooth morphogenesis. Moreover, it is possible that these substances can play a role in the mesenchymal-epithelial interaction in the developing human tooth.  相似文献   

3.
4.
This study examined the detailed gene expression pattern of three different heat shock proteins (HSPs), Hsc73, Hsj2, and Hsp86, by means of an in situ hybridization method. Hsc73, Hsj2, and Hsp86 were shown in our previous study to be differentially expressed in the mouse embryonic mandible at day 10.5 (E10.5) gestational age. These HSP genes showed similar expression patterns during development of the mouse lower first molar. HSPs-expressing cells were widely distributed in both the epithelial and underlying ectomesenchymal cells at E10.5, and then were slightly localized at E12 in an area where the tooth germ of the lower first molar is estimated to be formed. A strong expression of HSPs was observed in the tooth germ at E13.5. At the cap stage, HSPs were expressed in the enamel organ and dental papilla. At the bell stage, HSPs were distinctly expressed in the inner enamel epithelium and dental papilla cells facing the inner enamel epithelial layer, which later differentiate into ameloblasts and odontoblasts, respectively. This study is the first report in which Hsc73, Hsj2, and Hsp86 were distinctly expressed in the developing tooth germ, thus suggesting these HSPs are related to the development and differentiation of odontogenic cells.  相似文献   

5.
Maspin is a 42 kDa serine protease inhibitor that possesses tumor suppressive and anti-angiogenic activities. Despite of a huge amount of data concerning the expression pattern of maspin in various tissues and its relevance to the biological properties of a variety of human cancer cells, little is known on the maspin expression in skeletal and tooth tissues. Recently, we reported that maspin may play an important role in extracellular matrix formation in bone by enhancing the accumulation of latent TGF-β in the extracellular matrix. This study was performed to elucidate the possible role of maspin in tooth development. First, an immunohistochemical analysis for human tooth germs at the late bell stage showed the expression of maspin by active ameloblasts and odontoblasts that were forming enamel and dentin, respectively. During rat tooth development, maspin expression was observed for the first time in inner and outer enamel epithelial cells and dental papilla cells at early bell stage. The neutralizing anti-maspin antibody inhibited the proper dental tissue formation in organ cultures of mandibular first molars obtained from 21-day-old rat embryos. In addition, the proliferation of HAT-7 cells, a rat odontogenic epithelial cell line, and human dental papilla cells were suppressed in a dose-dependent manner with anti-maspin antibody. Moreover, RT-PCR analysis showed that the expression of mRNA for tooth-related genes including dentin matrix protein 1, dentin sialophosphoprotein and osteopontin in human dental papilla cells was inhibited when treated with anti-maspin antibody. These findings suggest that maspin expressed in ameloblasts and odontoblasts plays an important physiological role in tooth development through the regulation of matrix formation in dental tissues.  相似文献   

6.
At the bud stage of tooth development the neural crest derived mesenchyme condenses around the dental epithelium. As the tooth germ develops and proceeds to the cap stage, the epithelial cervical loops grow and appear to wrap around the condensed mesenchyme, enclosing the cells of the forming dental papilla. We have fate mapped the dental mesenchyme, using in vitro tissue culture combined with vital cell labelling and tissue grafting, and show that the dental mesenchyme is a much more dynamic population then previously suggested. At the bud stage the mesenchymal cells adjacent to the tip of the bud form both the dental papilla and dental follicle. At the early cap stage a small population of highly proliferative mesenchymal cells in close proximity to the inner dental epithelium and primary enamel knot provide the major contribution to the dental papilla. These cells are located between the cervical loops, within a region we have called the body of the enamel organ, and proliferate in concert with the epithelium to create the dental papilla. The condensed dental mesenchymal cells that are not located between the body of the enamel organ, and therefore are at a distance from the primary enamel knot, contribute to the dental follicle, and also the apical part of the papilla, where the roots will ultimately develop. Some cells in the presumptive dental papilla at the cap stage contribute to the follicle at the bell stage, indicating that the dental papilla and dental follicle are still not defined populations at this stage. These lineage-tracing experiments highlight the difficulty of targeting the papilla and presumptive odontoblasts at early stages of tooth development. We show that at the cap stage, cells destined to form the follicle are still competent to form dental papilla specific cell types, such as odontoblasts, and produce dentin, if placed in contact with the inner dental epithelium. Cell fate of the dental mesenchyme at this stage is therefore determined by the epithelium.  相似文献   

7.
The knowledge of understanding the molecular traits of the sterile triploid fish is sparse. Herein, we analyzed the microRNA (miRNA) alternations in the testes of the sterile triploid fish produced by crossing the tetraploid fish with the diploid fish, compared with those of tetraploids and diploids used as the controls. A total of 136, 134, and 142 conserved miRNAs and 105, 112, and 119 novel miRNAs were identified in the diploid, triploid, and tetraploid fish, respectively. The genes targeted by the differentially expressed miRNAs were identified and were enriched in the GO term cell surface receptor signaling pathway, cellular process, G-protein coupled receptor signaling pathway, and metabolic process. KEGG pathway enrichment was also assessed to evaluate the target genes with differentially expressed miRNAs and these genes were enriched in four pathways (synthesis and degradation of ketone bodies, pentose and glucuronate interconversions, cyanoamino acid metabolic process, and ascorbate and aldarate metabolism). Nine differentially expressed miRNAs were verified by quantitative real-time PCR analysis (qPCR). The upregulated miRNAs in triploids, including miR-101a, miR-199-5p, miR-214, miR-222, and miR-193a, showed the same results with high-throughput sequencing. Among the selected downregulated miRNAs, miR-7b and miR-153b had significantly lower expression levels in triploids. Dnah3 and Tekt1 genes targeted by miR-199-5p showed lower expression in triploids by qPCR. These verified differentially expressed miRNAs may participate in testicular development and sperm activity by targeting functional genes, which were identified with differential expression in the triploid. This evidence provides insights into the epigenetic regulatory mechanisms of sterility in triploid cyprinids.  相似文献   

8.
The detailed in situ expression pattern of the Set-α gene has been studied. Previously we showed that Set-α is a differentially expressed gene in the embryonic mouse mandible at day 10.5 (E10.5) gestational age. Cells expressing Set-α were widely distributed in both the epithelial and underlying ectomesenchymal cells at E10.5. At E12, they were slightly aggregated in an area where tooth germ of the lower first molar is estimated to be formed. At E13.5, Set-α was strongly expressed in the tooth germ. At the cap stage, Set-α was expressed in the enamel organ and dental papilla. At the bell stage, Set-α was distinctly expressed in the inner enamel epithelial and dental papilla cells facing the inner enamel epithelial layer, which were intended to differentiate into ameloblasts and odontoblasts, respectively. Interestingly, Set-α was also expressed in several embryonic craniofacial tissues derived from the ectoderm. This study is the first report that Set-α is distinctly expressed in the developing tooth germ, and suggests that Set-α plays an important role in both the initiation and the growth of the tooth germ, as well as in the differentiation of ameloblasts and odontoblasts.  相似文献   

9.
10.
Undifferentiated odontogenic epithelium and dental papilla cells differentiate into ameloblasts and odontoblasts, respectively, both of which are essential for tooth development. These differentiation processes involve dramatic functional and morphological changes of the cells. For these changes to occur, activation of mitochondrial functions, including ATP production, is extremely important. In addition, these changes are closely related to mitochondrial fission and fusion, known as mitochondrial dynamics. However, few studies have focused on the role of mitochondrial dynamics in tooth development. The purpose of this study was to clarify this role. We used mouse tooth germ organ cultures and a mouse dental papilla cell line with the ability to differentiate into odontoblasts, in combination with knockdown of the mitochondrial fission factor, dynamin related protein (DRP)1. In organ cultures of the mouse first molar, tooth germ developed to the early bell stage. The amount of dentin formed under DRP1 inhibition was significantly larger than that of the control. In experiments using a mouse dental papilla cell line, differentiation into odontoblasts was enhanced by inhibiting DRP1. This was associated with increased mitochondrial elongation and ATP production compared to the control. These results suggest that DRP1 inhibition accelerates dentin formation through mitochondrial elongation and activation. This raises the possibility that DRP1 might be a therapeutic target for developmental disorders of teeth.  相似文献   

11.
MicroRNAs are small non-coding RNAs that regulate protein expression by binding 3′UTRs of target mRNAs, thereby inhibiting translation. Similar to siRNAs, miRNAs are cleaved by Dicer. Mouse and ES cell Dicer mutants demonstrate that microRNAs are necessary for embryonic development and cellular differentiation. However, technical obstacles and the relative infancy of this field have resulted in few data on the functional significance of individual microRNAs. We present evidence that miR-17 family members, miR-17-5p, miR-20a, miR-93, and miR-106a, are differentially expressed in developing mouse embryos and function to control differentiation of stem cells. Specifically, miR-93 localizes to differentiating primitive endoderm and trophectoderm of the blastocyst. We also observe high miR-93 and miR-17-5p expression within the mesoderm of gastrulating embryos. Using an ES cell model system, we demonstrate that modulation of these miRNAs delays or enhances differentiation into the germ layers. Additionally, we demonstrate that these miRNAs regulate STAT3 mRNA in vitro. We suggest that STAT3, a known ES cell regulator, is one target mRNA responsible for the effects of these miRNAs on cellular differentiation.  相似文献   

12.
Cardiac fibrosis is associated with diverse heart diseases. In response to different pathological irritants, cardiac fibroblasts may be induced to proliferate and differentiate into cardiac myofibroblasts, thus contributing to cardiac fibrosis. TGF-β signaling is implicated in the development of heart failure through the induction of cardiac fibrosis. C-Ski, an inhibitory regulator of TGF-β signaling, has been reported to suppress TGF-β1-induced human cardiac fibroblasts' proliferation and ECM protein increase; however, the underlying molecular mechanism needs further investigation. In the present study, we demonstrated that c-Ski could ameliorate isoproterenol (ISO)-induced rat myocardial fibrosis model and TGF-β1-induced primary rat cardiac fibroblasts' proliferation, as well as extracellular matrix (ECM) deposition. The protein level of c-Ski was dramatically decreased in cardiac fibrosis and TGF-β1-stimulated primary rat cardiac fibroblasts. In recent decades, a family of small non-coding RNA, namely miRNAs, has been reported to regulate gene expression by interacting with diverse mRNAs and inducing either translational suppression or mRNA degradation. Herein, we selected miR-34a and miR-93 as candidate miRNAs that might target to regulate c-Ski expression. After confirming that miR-34a/miR-93 targeted c-Ski to inhibit its expression, we also revealed that miR-34a/miR-93 affected TGF-β1-induced fibroblasts' proliferation and ECM deposition through c-Ski. Taken together, we demonstrated a miR-34a/miR-93-c-Ski axis which modulates TGF-β1- and ISO-induced cardiac fibrosis in vitro and in vivo; targeting the inhibitory factors of c-Ski to rescue its expression may be a promising strategy for the treatment of cardiac fibrosis.  相似文献   

13.
Changes in the distribution of tenascin during tooth development   总被引:10,自引:0,他引:10  
Tenascin is an extracellular matrix molecule that was earlier shown to be enriched in embryonic mesenchyme surrounding the budding epithelium in various organs including the tooth. In the present study tenascin was localized by immunohistology throughout the course of tooth development in the mouse and rat using polyclonal antibodies against chick tenascin. The results indicate that tenascin is expressed by the lineage of dental mesenchymal cells throughout tooth ontogeny. The intensity of staining with tenascin antibodies in the dental papilla mesenchyme was temporarily reduced at cap stage when the tooth grows rapidly and undergoes extensive morphogenetic changes. During the bell stage of morphogenesis, the staining intensity increased and tenascin was accumulated in the dental pulp even after completion of crown development and eruption. Tenascin was present in the dental basement membrane at the time of odontoblast differentiation. The dental papilla cells ceased to express tenascin upon differentiation into odontoblasts and tenascin was completely absent from dentin. It can be speculated that the remarkable expression of tenascin in the dental mesenchymal cells as compared to other connective tissues is associated with their capacity to differentiate into hard-tissue-forming cells.  相似文献   

14.
The distribution and ultrastructure of glycogen deposits were investigated in the murine tooth germ by histochemical periodic acid-Schiff (PAS) staining and transmission electron microscopy. Lower and upper first molars were examined in mouse embryos at embryonic days 11.5–17 (E11.5–E17) and in 2-day-old postnatal (P2) mice. The oral and dental epithelia and the mesenchymal cells were generally PAS-positive during tooth morphogenesis. PAS-negative cells were present at E13 in the distal tip of the tooth bud epithelium and in the contacting mesenchyme, and this complete lack of PAS reactivity continued in the dental papilla mesenchyme and inner enamel epithelium during the cap and bell stages. The lack of glycogen deposits in the interacting epithelium and mesenchyme during early morphogenesis may be associated with their demonstrated high signaling activities. Mesenchymal cells in the dental follicle consistently possessed small clusters or large pools of glycogen, which disappeared by P2. Since an intense PAS reaction was seen in mesenchymal cells at future bone sites, the glycogen in the dental follicle cells may be associated with their development into hard-tissue-forming cells. Ultrastructural observation of the enamel organ cells from the cap to early bell stages (E14–E15) revealed the occurrence of glycogen pools, which were associated with the Golgi apparatus and with vesicles having amorphous contents. Glycogen particles were also occasionally present inside vesicles or in the extracellular matrix. These may be associated with the exocytosis of glycosaminoglycan components into extracellular spaces and the formation of the stellate reticulum. Received: 9 November 1998 / Accepted: 17 January 1999  相似文献   

15.
The dental basement membrane (BM) putatively mediates epithelial-mesenchymal interactions during tooth morphogenesis and cytodifferentiation. Type IV collagen alpha chains, a major network-forming protein of the dental BM, was studied and results disclosed distinct expression patterns at different stages of mouse molar germ development. At the dental placode and bud stage, the BM of the oral epithelium expressed alpha 1, alpha 2, alpha 5 and alpha 6 chains while the gubernaculum dentis, in addition to the above four chains, also expressed a 4 chain. An asymmetrical expression for alpha 4, alpha 5 and alpha 6 chains was observed at the bud stage. At the early bell stage, the BM associated with the inner enamel epithelium (IEE) of molar germ expressed alpha 1, alpha 2 and alpha 4 chains while the BM of the outer enamel epithelium (OEE) expressed only alpha 1 and a 2 chains. With the onset of dentinogenesis, the collagen a chain profile of the IEE BM gradually disappeared. Howeverfrom the early to late bell stage, the gubernaculum dentis consistently expressed alpha 1, alpha 2, alpha 5 and a 6 chains resembling fetal oral mucosa. These findings suggest that stage- and position-specific distribution of type IV collagen alpha subunits occur during molar germ development and that these changes are essential for molar morphogenesis and cytodifferentiation.  相似文献   

16.
Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development.  相似文献   

17.
18.
Physiological cardiac hypertrophy is an adaptive mechanism, induced during chronic exercise. As it is reversible and not associated with cardiomyocyte death, it is considered as a natural tactic to prevent cardiac dysfunction and failure. Though, different studies revealed the importance of microRNAs (miRNAs) in pathological hypertrophy, their role during physiological hypertrophy is largely unexplored. Hence, this study is aimed at revealing the global expression profile of miRNAs during physiological cardiac hypertrophy. Chronic swimming protocol continuously for eight weeks resulted in induction of physiological hypertrophy in rats and histopathology revealed the absence of tissue damage, apoptosis or fibrosis. Subsequently, the total RNA was isolated and small RNA sequencing was executed. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during physiological hypertrophy. The expression profile of the significantly differentially expressed miRNAs was validated by qPCR. In silico prediction of target genes by miRanda, miRdB and TargetScan and subsequent qPCR analysis unraveled that miRNAs including miR-99b, miR-100, miR-19b, miR-10, miR-208a, miR-133, miR-191a, miR-22, miR-30e and miR-181a are targeting the genes that primarily regulate cell proliferation and cell death. Gene ontology and pathway mapping showed that the differentially expressed miRNAs and their target genes were mapped to apoptosis and cell death pathways principally via PI3K/Akt/mTOR and MAPK signaling. In summary, our data indicates that regulation of these miRNAs with apoptosis regulating potential can be one of the major key factors in determining pathological or physiological hypertrophy by controlling fibrosis, apoptosis and cell death mechanisms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号