首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
The high prevalence of obesity in children may increase the magnitude of lifetime risk of cardiovascular disease (CD). At present, explicit data for recommending biomarkers as routine pre-clinical markers of CD in children are lacking. C-type natriuretic peptide (CNP) is assuming increasing importance in CD; in adults with heart failure, its plasma levels are related to clinical and functional disease severity. We have previously reported five different reference intervals for blood CNP as a function of age in healthy children; however, data on plasma CNP levels in obese children are still lacking. Aim of this study was to assess CNP levels in obese adolescents and verify whether they differ from healthy subjects. Plasma CNP was measured in 29 obese adolescents (age: 11.8 ± 0.4 years; BMI: 29.8 ± 0.82) by radioimmunoassay and compared with the reference values of healthy subjects. BNP was also measured. Both plasma CNP and BNP levels were significantly lower in the obese adolescents compared to the appropriate reference values (CNP: 3.4 ± 0.2 vs 13.6 ± 2.3 pg/ml, p < 0.0001; BNP: 18.8 ± 2.6 vs 36.9 ± 5.5 pg/ml, p = 0.003). There was no significant difference between CNP values in males and females. As reported in adults, we observed lower plasma CNP and BNP levels in obese children, suggesting a defective natriuretic peptide system in these patients. An altered regulation of production, clearance and function of natriuretic peptides, already operating in obese adolescents, may possibly contribute to the future development of CD. Thus, the availability of drugs promoting the action of natriuretic peptides may represent an attractive therapeutic option to prevent CD.  相似文献   

2.
C-type natriuretic peptide (CNP) plasma levels are extremely low and a pre-analytical phase is necessary to assay plasma CNP concentrations. Amino-terminal CNP (NT-proCNP) circulates at higher concentrations than CNP, allowing a direct assay and the use of smaller amounts of plasma.Aim of this study was to evaluate the analytical performance of a direct NT-proCNP assay and to measure its plasma levels in heart failure (CHF), diabetes and chirrosis patients.NT-proCNP and CNP were measured in 130 CHF, 19 patients with diabetes, 24 with hepatic cirrhosis and 73 controls.Plasma NT-proCNP was higher in all the clinical conditions studied (controls:45.5 ± 1.84 pg/ml, CHF:67.09 ± 7.36, diabetes:51.5 ± 5.75 cirrhosis:78.4 ± 19.9; p = 0.034, p = 0.04 controls vs. CHF and cirrhosis, respectively) and in CHF NT-proCNP concentration showed a significant increase as a function of clinical severity.By comparison of ROC curves, CNP assay resulted better associated with disease than NT-proCNP assay in all the different clinical conditions probably due to different release and clearance.The determination of NT-proCNP adds a piece of information to better understanding the molecular mechanisms at the basis of CNP action in different diseases.Due to its higher analytical feasibility, this determination could become widespread in clinical biochemistry laboratories and serve as a complementary marker of disease conditions.  相似文献   

3.
《Small Ruminant Research》2008,74(1-3):174-180
In this study, biological samples (slaughterhouse material) were collected from 30 sheep and 36 goats and classified according to gestational stage into either early or late gestation. Samples consisted of allantoic fluid, amniotic fluid, fetal liver, fetal kidney, fetal thyroid gland, maternal plasma and liver to determine selenium (Se) concentrations throughout gestation. The Se concentrations in the allantoic fluid, fetal liver and kidney increased significantly (p < 0.01) during late gestation. Concurrently, the Se concentrations in amniotic fluid, maternal plasma and liver decreased significantly (p < 0.01) over time. Significant (p < 0.01) positive relationships were recorded between the age of the fetus and Se concentrations in the allantoic fluid (r = 0.57–0.75), fetal liver (r = 0.43–0.59) and kidney (r = 0.80–0.81) in both sheep and goats. A significant (p < 0.05) positive relationships were also recorded between the Se concentrations in the allantoic fluid and fetal liver (r = 0.35–0.37), the maternal plasma and liver Se concentrations (r = 0.37–0.57) between sheep and goats. A significant (p < 0.05) negative correlation was recorded between the Se concentrations in the allantoic fluid with maternal plasma of sheep (r = −0.41) as well as between the fetal liver and maternal liver Se (r = −0.22 to 0.50) and a negative correlation (r = −0.42 to 0.43) (p < 0.01) between Se concentrations in the fetal liver and amniotic fluid in both sheep and goats, respectively. Se concentration in the fetal liver was significantly (p < 0.01) higher than that of the kidney and thyroid. In the thyroid gland no morphological differences were noted. Strong fetal–maternal relationships in Se concentration were evident throughout the gestational period and dams seem to sacrifice Se levels in order to maintain that in the fetus. Se concentrations in the amniotic and allantoic fluids could be used as a possible indicator of the Se status of the fetus throughout gestation.  相似文献   

4.
Population density and biomass of bacteria and meiofauna were investigated seasonally in the sediments of the north-western bank of Red Sea. Samples of sediments were collected seasonally from three different stations to determine microphytobenthic biomass (chlorophyll a), protein, lipid, carbohydrate, and total organic matter concentrations. These investigations revealed that microbial components tended to increase their dominancy, whereas sensitive meiofauna were extremely reduced during the entire study period. Thus a very low density of the total meiofauna (with an annual average of 109 ± 26 ind./10 cm2) was recorded whilst the benthic microbial population densities exhibited higher values (ranging from 0.31 ± 0.02 × 108 to 43.67 ± 18.62 × 108/g dry sediment). These changes in the relative importance analysis of benthic microbial components versus meiofaunal ones seem to be based on the impact of organic matter accumulation on the function and structure of these benthic communities. Proteins, lipids and carbohydrates showed very low concentration values, and the organic matter mostly consisted of carbohydrates, reflecting lower nutritional values for benthic fauna in general and meiofauna in particular. The distribution of microbial and meiofaunal communities seems to be dependent on the quality of the organic matter rather than on its quantity. Total organic matter concentrations varied between 5.8 and 7.6 mg/g, with organic carbon accounting for only 32% of the total organic matter. Chlorophyll a attained very low values, fluctuating between 0.11 and 0.56 μg/g, indicating the oligotrophy of the studied area. The very low concentration of chlorophyll a in the Red Sea sediment suggests that the sedimentary organic matter, heterotrophic bacteria and/or protozoa constitute an alternative resource that is consumed by meiofauna when algae are less abundant. Protozoa, therefore, represent the “missing link in bacteria–meiofauna interaction in the Red Sea marine sediment ecosystem.  相似文献   

5.
To observe effect of sophora japonica total flavonoids on pancreas, kidney tissue morphology of streptozotocin-induced diabetic mice model. Mice received tail vein injection of streptozotocin (60 mg/kg) for diabetes modeling. The model mice were divided into five groups, to be respectively fed with high, middle and small doses of sophora japonica total flavonoids solution, metformin solution and saline of the same volume. Another blank control group was set to be fed with saline of the same volume. The mice were administered once a day for 30 consecutive days, to be euthanatized after fasting blood glucose level testing on 30th day with pancreas, kidney taken out for pathological section and microscopic examination. The mice chain streptozotocin diabetes modeling was successful, with significant pathological changes (P < 0.01) in pancreas, kidney. Compared with model group, high, middle and small doses of sophora japonica total flavonoids could significantly alleviate streptozotocin-induced pancreas, kidney damage (P < 0.01). Conclusion: Sophora japonica total flavonoids can effectively alleviate pancreas, kidney injury of streptozotocin-induced diabetic mice model.  相似文献   

6.
The wastewater produced in the process of canning fruit contains a syrup that consists mainly of sucrose. This syrup wastewater was treated by methane fermentation in an upflow anaerobic sludge blanket reactor. The organic loading rate of syrup wastewater was increased gradually as fermentation progressed. The higher the organic loading rate, the more methane gas evolved until the organic loading rate reached 30.3 kg COD m?3 d?1, at which point methane generation abruptly diminished because the loading rate was too high to stably operate the reactor. The changes in the microbial community, that of both bacteria and archaea in the granules, were analyzed simultaneously using PCR-DGGE during the fermentation process. Methanosaeta spp., which are methanogenic archaea that produce extracellular polymers indispensable for the formation of granules, were dominant when the methane gas vigorously evolved, and the iron-reducing bacterium belonging to genus Geobacter, which outcompetes methanogens, grew proportionally with the deterioration of methane fermentation.  相似文献   

7.
8.
Lili Nan  Quanen Guo 《农业工程》2018,38(5):339-344
A field experiment was conducted to assess the influences of soil chemical, physical, and biological properties of Alhagi sparsifolia community in Linze, Gaotai, and Guazhou County, Gansu province, China. Results showed that soils sampled were generally infertile with low levels of organic matter, available nitrogen, phosphorus, copper, manganese, and zinc with bacteria dominant microbial communities supporting A. sparsifolia. Available potassium and iron were sufficient in the study sites. With increasing soil layer depth, the contents of organic matter, available nitrogen, phosphorus, potassium, manganese, urease, dehydrogenase, bacteria, and actinomyces in the soil decreased significantly (P < 0.05), whereas the concentrations of moisture, available iron, and zinc in the soil increased significantly (P < 0.05). The contents of organic matter, available nitrogen, phosphorus, potassium, iron, manganese, zinc, copper, urease, dehydrogenase, bacteria, and actinomyces showed strong seasonal variations (P < 0.05). All these variables except dehydrogenase, bacteria, and actinomyces were the highest in summer and the lowest in spring. The comprehensive score of soil qualities was the greatest in Linze, medium in Guazhou, and lowest in Gaotai.  相似文献   

9.
IntroductionRadiation therapy is one of the most common tools for treating cancer. The aim is to deliver adequate doses of radiation to kill cancer cells and the most challenging part during this procedure is to protect normal cells from radiation. One strategy is to use a radioprotector to spare normal tissues from ionizing radiation effects. Researchers have pursued cerium oxide nanoparticles as a therapeutic agent, due to its diverse characteristics, which include antioxidant properties, making it a potential radioprotector.Materials and methodsOne hundred rats were divided into five groups of A) control group, intraperitoneal (IP) saline injection was done twice a week; B) bi-weekly IP injection of 14.5 nM (0.00001 mg/kg) CNP for two weeks; C) a single whole thorax radiation dose of 18 Gy; D) a single whole thorax radiation dose of 18 Gy + bi-weekly injection of 14.5 nM CNP for two weeks after radiation; E) bi-weekly IP injection of 14.5 nM CNP for two weeks prior to radiation + a single whole thorax radiation dose of 18 Gy. Thirty days after irradiation, 7 rats from each group were anesthetized and their lungs extracted for histopathological examination.ResultsStatistical analyses revealed that CNP significantly decreased the incidence of tissue collapse and neutrophile aggregation in rats receiving CNP before radiation in comparison with the radiation group.ConclusionThe results suggested the possibility of using CNP as a future radioprotector due to its ability to protect normal cells against radiation-induced damage.  相似文献   

10.
Several molecules have been discovered that interfere with formation of bacterial biofilms, opening a new strategy for the development of more efficient treatments in case of antibiotic resistant bacteria. Amongst the most active compounds are some natural brominated furanones from marine algae Delisea pulchra that have proven to be able to control pathogenic biofilms. We have recently reported that some rubrolide analogues are able to inhibit biofilm formation of Enterococcus faecalis. In the present Letter we describe results of the biological evaluation of a small library of 28 compounds including brominated furanones and the corresponding lactams against biofilm formation of Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis and Streptococcus mutans. Our results showed that in general these compounds were more active against biofilms of S. epidermidis and P. aeruginosa, with little or no inhibition of planktonic bacterial growth. In some cases they were able to prevent biofilm formation of P. aeruginosa at concentrations as low as 0.6 μg/mL (1.3 μM, compound 3d) and 0.7 μg/mL (1.3 μM, 3f). Results also indicate that, in general, lactams are more active against biofilms than their precursors, thus designating this class of molecules as good candidates for the development of a new generation of antimicrobial drugs targeted to biofilm inhibition.  相似文献   

11.
Studies on the microbial ecology of gut microbiota in bats are limited and such information is necessary in determining the ecological significance of these hosts. Short-nosed fruit bats (Cynopterus brachyotis brachyotis) are good candidates for microbiota studies given their close association with humans in urban areas. Thus, this study explores the gut microbiota of this species from Peninsular Malaysia by means of biochemical tests and 16S rRNA gene sequences analysis. The estimation of viable bacteria present in the stomach and intestine of C. b. brachyotis ranged from 3.06 × 1010 to 1.36 × 1015 CFU/ml for stomach fluid and 1.92 × 1010 to 6.10 × 1015 CFU/ml for intestinal fluid. A total of 34 isolates from the stomach and intestine of seven C. b. brachyotis were retrieved. A total of 16 species of bacteria from eight genera (Bacillus, Enterobacter, Enterococcus, Escherichia, Klebsiella, Pantoea, Pseudomonas and Serratia) were identified, Enterobacteriaceae being the most prevalent, contributing 12 out of 16 species isolated. Most isolates from the Family Enterobacteriaceae have been reported as pathogens to humans and wildlife. With the possibility of human wildlife transmission, the findings of this study focus on the importance of bats as reservoirs of potential bacterial pathogens.  相似文献   

12.
The algicidal and growth-inhibiting bacteria associated with seagrasses and macroalgae were characterized during the summer of 2012 and 2013 throughout Puget Sound, WA, USA. In 2012, Heterosigma akashiwo-killing bacteria were observed in concentrations of 2.8 × 106 CFU g−1 wet in the outer organic layer (biofilm) on the common eelgrass (Zostera marina) in north Padilla Bay. Bacteria that inhibited the growth of Alexandrium tamarense were detected within the biofilm formed on the eelgrass canopy at Dumas Bay and North Bay at densities of ∼108 CFU g−1 wet weight. Additionally, up to 4100 CFU mL−1 of algicidal and growth-inhibiting bacteria affecting both A. tamarense and H. akashiwo were detected in seawater adjacent to seven different eelgrass beds. In 2013, H. akashiwo-killing bacteria were found on Z. marina and Ulva lactuca with the highest densities of ∼108 CFU g−1 wet weight at Shallow Bay, Sucia Island. Bacteria that inhibited the growth of H. akashiwo and A. tamarense were also detected on Z. marina and Z. japonica at central Padilla Bay. Heterosigma akashiwo cysts were detected at a concentration of 3400 cysts g−1 wet weight in the sediment from Westcott Bay (northern San Juan Island), a location where eelgrass disappeared in 2002. These findings provide new insights on the ecology of algicidal and growth-inhibiting bacteria, and suggest that seagrass and macroalgae provide an environment that may influence the abundance of harmful algae in this region. This work highlights the importance of protection and restoration of native seagrasses and macroalgae in nearshore environments, in particular those regions where shellfish restoration initiatives are in place to satisfy a growing demand for seafood.  相似文献   

13.
Oxidative stress, inflammation and fibrosis can cause irreversible damage on cell structure and function of kidney and are key pathological factors in Diabetic Nephropathy (DN). Therefore, multi-target agents are urgently need for the clinical treatment of DN. Using Pirfenidone as a lead compound and based on the previous research, two novel series (5-trifluoromethyl)-2(1H)-pyridone analogs were designed and synthesized. SAR of (5-trifluoromethyl)-2(1H)-pyridone derivatives containing nitrogen heterocyclic ring have been established for in vitro potency. In addition, compound 8, a novel agent that act on multiple targets of anti-DN with IC50 of 90 μM in NIH3T3 cell lines, t1/2 of 4.89 ± 1.33 h in male rats and LD50 > 2000 mg/kg in mice, has been advanced to preclinical studies as an oral treatment for DN.  相似文献   

14.
ProjectBeside its useful functions at very low concentrations, selenium including supplementary Se sources pose a potential toxicological risk. The toxicity of selenium species was tested in HaCaT cell culture and related nephrotoxicity in mice.ProcedureThe apoptotic shrinkage and necrotic expansion of cells were measured by time-lapse image microscopy. Acute nephrotoxicity was estimated upon administration of various selenium species to mice for two weeks. To confirm or to refute the accumulation of Se in the kidney and its potential chronic effect, Se concentration in kidney tissue and histopathlology were tested.ResultsThe comparison of selenium species showed that organic lactomicroSe did not affect cell growth at 5 ppm, but inorganic nanoSe severely hampered it at lower concentration (1 ppm). The in vivo Se treatment (0.5, 5, 50 ppm, corresponding to 4, 40 and 400 μg/kg) was misleading as it did neither affect the outward appearance nor the weight of the kidney. Se accumulation was observed after selenate, selenite, SelPlex, selenite and nanoSe administration, while lactomicroSe caused no traceable accumulation. In vivo, ex vivo and in vitro experiments reflected this order of selenium toxicity: selenate > selenite > SelPlex = nanoSe > lactomicroSe.ConclusionWithin the tested species lactomicroSe was the only non-nephrotoxic selenium source recommended for nutritional Se supplementation.  相似文献   

15.
《Process Biochemistry》2010,45(11):1779-1786
During bioreactor cultures, microorganisms are submitted to non-optimal conditions such as nutritional and hydrodynamic stresses which may lead to modifications of the physiological cell response; this is especially true for filamentous microorganisms like Streptomycetes also subjected to significant morphological changes. In the present work, growth and production of pristinamycins by Streptomyces pristinaespiralis in shaking flasks have been related to power dissipation. The filamentous bacteria were grown in different flask conditions with various total and working volumes and at two agitation rates, to test the influence of power dissipation and gas–liquid mass transfer coefficient on growth and antibiotics production. As a first step, computational fluid dynamics–volume of fluid (CFD–VOF) calculations were shown to be able to predict power dissipations for the various operating conditions in Newtonian flow conditions. Then, in non-Newtonian flow conditions (biomass concentration superior to 14 g L−1), the rheological model of Sisko was implemented in CFD simulations for the calculation of the fluid viscosity and then of power dissipation. Whereas microbial growth was correlated to kLa, the antibiotics production onset was linked to the volume mean power dissipation. Once a minimal cell concentration of 15 g L−1 was reached, the concentration of antibiotics was correlated to power dissipation with an optimal range of production, between 5.5 and 8.5 kW m−3. Higher power dissipation entailed a drop in production which could be explained by hydrodynamic cell damages.  相似文献   

16.
This study was conducted to elucidate relationships among various phenolic fractions in, and methane (CH4) emissions from, tropical plants when incubated in ruminal fluid in vitro. As a second objective, principal component analysis (PCA) was tested for its utility in screening plants for their ability to reduce CH4 formation at simultaneously acceptable nutritional quality. Leaves from 27 tropical plants were analyzed for their nutritional composition and various phenolic fractions. They were incubated in vitro using the Hohenheim gas test method. Variables measured after 24 h of incubation were total gas and CH4 production, and pH, ammonia, bacterial and protozoal counts, as well as short-chain fatty acids in the incubation fluid. In vitro organic matter (OM) digestibility was computed by a standard equation. The data obtained was subjected to analysis of variance, correlation, regression and PCA. Among phenolic fractions, total phenols had the closest relationship with CH4/digestible OM (r = ?0.84, P<0.001). The total tannin fraction contributed strongly to this effect (r = ?0.74, P<0.001) whereas the non-tannin phenol fraction was less important (r = ?0.45, P<0.05). Methane reduction by the influence of non-tannin phenols was not associated with a negative effect on protein degradation, while this was the case with tannins. Condensed (r = ?0.60, P<0.01) and hydrolysable tannins (r = ?0.60, P<0.01) contributed to the decrease in CH4/digestible OM. The loading plot of PCA showed that dietary crude protein (CP) content and incubation fluid ammonia, total short-chain fatty acids, propionate, valerate, iso-butyrate, iso-valerate as well as in vitro OM digestibility were clustered. They had inverse directions to contents of fiber fractions and incubation fluid acetate proportion and acetate-to-propionate ratio. The methane-to-total-gas ratio had the opposite effect of the contents of any phenolic fraction. Plants possessing a favorable forage quality, based on the corresponding PCA score plot, were Carica papaya, Manihot esculenta, Morinda citrifolia, Sesbania grandiflora and Melia azedarach, whereas CH4 mitigating plants included Swietenia mahagoni, Acacia villosa, Eugenia aquea, Myristica fragrans and Clidemia hirta. All phenolic fractions studied reduced CH4 emissions from in vitro incubations with ruminal fluid and PCA seems useful to screen plants for high nutritional quality and low ruminal CH4 formation. However, high forage quality seemed to be partially associated with high CH4 emission. The search for plants rich in non-tannin phenols might be promising as these compounds appear to decrease CH4 while they obviously have less negative effect on protein degradation as compared to the tannin fractions.  相似文献   

17.
Lectin from crude extract of small black kidney bean (Phaseolus vulgaris) was successfully extracted using the reversed micellar extraction (RME). The effects of water content of organic phase (Wo), ionic strength, pH, Aerosol-OT (AOT) concentration and extraction time on the forward extraction and the pH and ionic strength in the backward extraction were studied to optimize the extraction efficiency and purification factor. Forward extraction of lectin was found to be maximum after 15 min of contact using 50 mM AOT in organic phase with Wo 27 and 10 mM citrate-phosphate buffer at pH 5.5 containing 100 mM NaCl in the aqueous phase. Lectin was backward extracted into a fresh aqueous phase using sodium-phosphate buffer (10 mM, pH 7.0) containing 500 mM KCl. The overall yield of the process was 53.28% for protein recovery and 8.2-fold for purification factor. The efficiency of the process was confirmed by gel electrophoresis analysis.  相似文献   

18.
《Process Biochemistry》2014,49(12):2235-2240
The interaction of anaerobic dechlorinating cultures with soil and aquifer geochemical components is largely unknown, although this has potentially a major impact on the bioremediation of chlorinated solvent-contaminated sites. In this study, we found that addition of magnetite (Fe3O4) – the end-product of Fe(III)-reduction by dissimilatory iron reducing bacteria – to anaerobic dechlorinating cultures enhances the kinetics of trichloroethene dechlorination up to 1.5-times, compared to unamended controls. Specifically, a low concentration (approx. 10 mg/L as total Fe) of small size particles (200 nm-filtered) resulted in a greater stimulatory effect compared to the addition of a higher concentration (approx. 300 mg/L as total Fe) of unfiltered particles. Notably, Desulforomonas spp. were substantially enriched in microcosms supplemented with magnetite, whereas Dehalococcoides mccartyi spp. was found to be markedly inhibited or outcompeted. Multiple lines of evidence, including the direct visualization of microbial cells and magnetite particles via Confocal Laser Scanning Microscopy (CLSM), suggest that electrically conductive particles promoted the establishment of a cooperative metabolism, based on direct interspecies electron transfer, between dechlorinating and non-dechlorinating microorganisms.  相似文献   

19.
Expression of recombinant proteins as inclusion bodies in bacteria is one of the most efficient ways to produce cloned proteins, as long as the inclusion bodies can be successfully refolded. In this study, the different parameters were investigated and optimized on the refolding of denatured lipase. The maximum lipase activity of 5000 U/L was obtained after incubation of denatured enzyme in a refolding buffer containing 20 mM Tris–HCl (pH 7.0), 1 mM Ca2+ at 20 °C. Then, the refolded lipase was purified to homogeneity by anion exchange chromatography. The purified refolded lipase was stable in broad ranges of temperatures and pH values, as well as in a series of water-miscible organic solvents. In addition, some water-immiscible organic solvents, such as petroleum ether and isopropyl ether, could reduce the polarity and increase the nonpolarity of the refolding system. The results of Fourier transform infrared (FT-IR) microspectroscopy were the first to confirm that lipase refolding could be further improved in the presence of organic solvents. The purified refolded lipase could enantioselectively hydrolyze trans-3-(4-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM]. These features render the lipase attraction for biotechnological applications in the field of organic synthesis and pharmaceutical industry.  相似文献   

20.
《Bio Systems》2009,95(3):193-201
Phospholipid (PL) molecules form the main structure of the membrane that prevents the direct contact of opposing articular cartilage layers. In this paper we conceptualise articular cartilage as a giant reverse micelle (GRM) in which the highly hydrated three-dimensional network of phospholipids is electrically charged and able to resist compressive forces during joint movement, and hence loading. Using this hypothetical base, we describe a hydrophilic–hydrophilic (HL–HL) biopair model of joint lubrication by contacting cartilages, whose mechanism is reliant on lamellar cushioning. To demonstrate the viability of our concept, the electrokinetic properties of the membranous layer on the articular surface were determined by measuring via microelectrophoresis, the adsorption of ions H, OH, Na and Cl on phospholipid membrane of liposomes, leading to the calculation of the effective surface charge density. The surface charge density was found to be −0.08 ± 0.002 cm−2 (mean ± S.D.) for phospholipid membranes, in 0.155 M NaCl solution and physiological pH. This value was approximately five times less than that measured in 0.01 M NaCl. The addition of synovial fluid (SF) to the 0.155 M NaCl solution reduced the surface charge density by 30% which was attributed to the binding of synovial fluid macromolecules to the phospholipid membrane. Our experiments show that particles charge and interact strongly with the polar core of RM. We demonstrate that particles can have strong electrostatic interactions when ions and macromolecules are solubilized by reverse micelle (RM). Since ions are solubilized by reverse micelle, the surface entropy influences the change in the charge density of the phospholipid membrane on cartilage surfaces. Reverse micelles stabilize ions maintaining equilibrium, their surface charges contribute to the stability of particles, while providing additional screening for electrostatic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号