首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this issue of Molecular Cell, Lv et al. (2011) identify a novel feedback mechanism in which increased glycolysis induces the acetylation and chaperone-mediated autophagic degradation of the glycolytic regulator PKM2, revealing a novel metabolic feedback loop that drives tumor growth.  相似文献   

2.
Siva-1, as a p53-inducible gene, has been shown to induce extensive apoptosis in a number of different cell lines. Recent evidence suggests that Siva-1 functions as a part of the auto-regulatory feedback loop that restrains p53 through facilitating Mdm2-mediated p53 degradation. Also, Siva-1 plays an important role in suppressing tumor metastasis. Here we review the current understanding of Siva-1-mediated apoptotic signaling pathway. We also add comments on the p53-Siva-1 feedback loop, the novel function of Siva-1 in suppressing tumor metastasis, and their potential implications.  相似文献   

3.
4.
Tumor-associated mutations of rat mitochondrial transfer RNA genes.   总被引:4,自引:3,他引:1       下载免费PDF全文
Mitochondrial DNA is a sensitive target of chemical carcinogens (Backer and Weinstein (1980) Science 209, 297-299), suggesting that mutations of the mitochondrial genome occur in tumor cells. We examined this point by comparing mitochondrial DNA sequences in four rat tumors with those of normal rat liver. Some novel mutations found in the tRNA genes of tumor mitochondria were as follows: nucleotides deletions in the aminoacyl-acceptor stem of the tRNATyr gene or in the anticodon stem of the tRNATrp gene and insertions in the "YpsiC" loop of the tRNACys gene. These structures are extraordinary compared with those of the tRNA genes of other mammals, indicating that these mutations are each associated with a corresponding tumor.  相似文献   

5.
Yang Z  Wang L 《FEBS letters》2012,586(8):1135-1140
Mdm2 is a crucial negative regulator of the tumor suppressor function of p53. However, little is known about Mdm2 protein stability regulation by other tumor suppressors. Nuclear receptor small heterodimer partner (SHP, NROB2) functions as a tumor suppressor in liver cancer. We show here a surprising finding of a feedback regulatory loop between SHP and Mdm2. SHP stabilizes Mdm2 protein by abrogating Mdm2 self-ubiquitination, and Mdm2 in turn attenuates SHP protein levels under p53-deficient conditions. Such cross-regulation critically depends on the physical interaction of SHP with Mdm2 through the SHP K170 residue. The Mdm2-SHP interplay represents a novel component of Mdm2 signaling that is likely to dictate Mdm2 activity and function.  相似文献   

6.
Chromatin remodeling impacts the structural neighborhoods and regulates gene expression. However, the role of enhancer-guided chromatin remodeling in the gene regulation remains unclear. Here, using RNA-seq and ChIP-seq, we identified for the first time that neurotensin (NTS) serves as a key oncogene in uveal melanoma and that CTCF interacts with the upstream enhancer of NTS and orchestrates an 800 kb chromosomal loop between the promoter and enhancer. Intriguingly, this novel CTCF-guided chromatin loop was ubiquitous in a cohort of tumor patients. In addition, a disruption in this chromosomal interaction prevented the histone acetyltransferase EP300 from embedding in the promoter of NTS and resulted in NTS silencing. Most importantly, in vitro and in vivo experiments showed that the ability of tumor formation was significantly suppressed via deletion of the enhancer by CRISPR-Cas9. These studies delineate a novel onco-enhancer guided epigenetic mechanism and provide a promising therapeutic concept for disease therapy.  相似文献   

7.
Luo G  Long J  Zhang B  Liu C  Xu J  Ni Q  Yu X 《Biochimica et biophysica acta》2012,1826(1):170-178
Pancreatic ductal adenocarcinom a (PDA) has two exceptional features. First, it is a highly lethal disease, with a median survival of less than 6months and a 5-year survival rate less than 5%. Second, PDA tumor cells are surrounded by an extensive stroma, which accounts for up to 90% of the tumor volume. It is well recognized that stromal microenvironment can accelerate malignant transformation, tumor growth and progression. More importantly, the interaction loop between PDA and its stroma greatly contributes to tumor growth and progression. We propose that the extensive stroma of PDA is closely linked to its poor prognosis. An improved understanding of the mechanisms that contribute to pancreatic tumor growth and progression is therefore urgently needed. Targeting the stroma may thus provide novel prevention, earlier detection and therapeutic options to this deadly malignancy. Accordingly, in this review, we will summarize the mechanism of PDA stroma formation, the role of the stroma in tumor progression and therapy resistance and the potential of stroma-targeted therapeutics strategies.  相似文献   

8.
It is well established that activation of protein kinase C (PKC) by phorbol esters promotes apoptosis in androgen-dependent prostate cancer cells. However, there is limited information regarding the cellular mechanisms involved in this effect. In this report we identified a novel autocrine pro-apoptotic loop triggered by PKCdelta activation in prostate cancer cells that is mediated by death receptor ligands. The apoptotic effect of phorbol 12-myristate 13-acetate in LNCaP cells was impaired by inhibition or depletion of tumor necrosis factor alpha-converting enzyme, the enzyme responsible for tumor necrosis factor alpha (TNFalpha) shedding. Moreover, the apoptogenic effect of conditioned medium collected after phorbol 12-myristate 13-acetate treatment could be inhibited by blocking antibodies against TNFalpha and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but not FasL, as well as by RNA interference depletion of TNFalpha and TRAIL receptors. Moreover, depletion or inhibition of death receptor downstream effectors, including caspase-8, FADD, p38 MAPK, and JNK, significantly reduced the apoptogenic effect of the conditioned medium. PKCdelta played a major role in this autocrine loop, both in the secretion of autocrine factors as well as a downstream effector. Taken together, our results demonstrate that activation of PKCdelta in prostate cancer cells causes apoptosis via the release of death receptor ligands and the activation of the extrinsic apoptotic cascade.  相似文献   

9.
Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM) are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins) is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1' triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×10(4) M(-1) s(-1). SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death.  相似文献   

10.
Loss of tumor suppressor adenomatous polyposis coli (APC) is thought to initiate the majority of all colorectal cancers. The predominant theory of colorectal carcinogenesis implicates stem cells as the initiating cells. However, relatively little is known about the function of APC in governing the homeostasis of normal intestinal stem cells. Here, we identify a novel double-negative feedback loop between APC and a translation inhibitor protein, Musashi1 (MSI1), in cultured human colonocytes. We show APC as a key factor in MSI1 regulation through Wnt signaling and identify APC mRNA as a novel target of translational inhibition by MSI1. We propose that APC/MSI1 interactions maintain homeostatic balance in the intestinal epithelium.  相似文献   

11.
We have previously defined a panel of fully human CD20 mAb. Most of these were unexpectedly efficient in their ability to recruit C1q to the surface of CD20-positive cells and mediate tumor lysis via activation of the classical pathway of complement. This complement-dependent cytotoxicity (CDC) potency appeared to relate to the unusually slow off-rate of these human Abs. However, we now present epitope-mapping data, which indicates that all human mAb bind a novel region of CD20 that may influence CDC potency. Epitope mapping, using both mutagenesis studies and overlapping 15-mer peptides of the extracellular loops of CD20, defined the amino acids required for binding by an extensive panel of mouse and human mAb. Binding by rituximab and mouse CD20 mAb, had an absolute requirement for alanine and proline at positions 170 and 172, respectively, within the large extracellular loop of CD20. Surprisingly, however, all of the human CD20 mAb recognize a completely novel epitope located N-terminally of this motif, also including the small extracellular loop of CD20. Thus, although off-rate may influence biological activity of mAb, another critical factor for determining CDC potency by CD20 mAb appears to be the region of the target molecule they recognize. We conclude that recognition of the novel epitope cooperates with slow off-rate in determining the activity of CD20 Ab in activation of complement and induction of tumor cell lysis.  相似文献   

12.
MDM2 is an important negative regulator of the tumor suppressor protein p53 which regulates the expression of many genes including MDM2. The delicate balance of this autoregulatory loop is crucial for the maintenance of the genome and control of the cell cycle and apoptosis. MDM2 hyperactivity, due to amplification/overexpression or mutational inactivation of the ARF locus, inhibits the function of wild-type p53 and can lead to the development of a wide variety of cancers. Thus, the development of anti-MDM2 therapies may restore normal p53 function in tumor cells and induce growth suppression and apoptosis. We report here a novel high-throughput fluorescence polarization binding assay and its application in rank ordering small-molecule inhibitors that block the binding of MDM2 to a p53-derived fluorescent peptide.  相似文献   

13.
14.
Allergic inflammation has been known to enhance the metastatic potential of tumor cells. The role of histone deacetylase-3 (HDAC3) in allergic skin inflammation was reported. We investigated HDAC3 involvement in the allergic inflammation-promotion of metastatic potential of tumor cells. Passive systemic anaphylaxis (PSA) induced HDAC3 expression and FcϵRI signaling in BALB/c mice. PSA enhanced the tumorigenic and metastatic potential of mouse melanoma cells in HDAC3- and monocyte chemoattractant protein 1-(MCP1)-dependent manner. The PSA-mediated enhancement of metastatic potential involved the induction of HDAC3, MCP1, and CD11b (a macrophage marker) expression in the lung tumor tissues. We examined an interaction between anaphylaxis and tumor growth and metastasis at the molecular level. Conditioned medium from antigen-stimulated bone marrow-derived mouse mast cell cultures induced the expression of HDAC3, MCP1, and CCR2, a receptor for MCP1, in B16F1 mouse melanoma cells and enhanced migration and invasion potential of B16F1 cells. The conditioned medium from B16F10 cultures induced the activation of FcϵRI signaling in lung mast cells in an HDAC3-dependent manner. FcϵRI signaling was observed in lung tumors derived from B16F10 cells. Target scan analysis predicted HDAC3 to be as a target of miR-384, and miR-384 and HDAC3 were found to form a feedback regulatory loop. miR-384, which is decreased by PSA, negatively regulated HDAC3 expression, allergic inflammation, and the positive feedback regulatory loop between anaphylaxis and tumor metastasis. We show the miR-384/HDAC3 feedback loop to be a novel regulator of the positive feedback relationship between anaphylaxis and tumor metastasis.  相似文献   

15.
《MABS-AUSTIN》2013,5(3):264-272
Human monoclonal antibodies (mAbs) can routinely be isolated from phage display libraries against virtually any protein available in sufficient purity and quantity, but library design can influence epitope coverage on the target antigen. Here we describe the construction of a novel synthetic human antibody phage display library that incorporates hydrophilic or charged residues at position 52 of the CDR2 loop of the variable heavy chain domain, instead of the serine residue found in the corresponding germline gene. The novel library was used to isolate human mAbs to various antigens, including the alternatively-spliced EDA domain of fibronectin, a marker of tumor angiogenesis. In particular, the mAb 2H7 was proven to bind to a novel epitope on EDA, which does not overlap with the one recognized by the clinical-stage F8 antibody. F8 and 2H7 were used for the construction of chelating recombinant antibodies (CRAbs), whose tumor-targeting properties were assessed in vivo in biodistribution studies in mice bearing F9 teratocarcinoma, revealing a preferential accumulation at the tumor site.  相似文献   

16.
Bone marrow-derived endothelial precursor cells contribute to tumor neovascularization. However, it is unclear when during progressive tumor growth circulating precursors are recruited into the preexisting vascular network, and how they home specifically into the tumor microenvironment. Here, we summarize recent findings from mouse models of multistage carcinogenesis, which reveal distinct phases of angiogenic activity. Only advanced tumors with a highly heterogeneous, sprouting vasculature recruite endothelial progenitors into neovessels. Surprisingly, during progressive tumor growth endothelial cells acquire new characteristics and secrete CC chemokines, a group of chemoattractants with adjacent cysteins, which play a dual role by enhancing neovascularization in an autocrine and endocrine fashion. Locally, chemokines stimulate endothelial proliferation; systemically, they guide chemokine receptor-positive circulating progenitors into the tumor bed. Subsequently, endothelial progenitors are truly integrated into the network of pre-existing vessel. This mechanism represents a novel concept where not the tumor itself, but endothelial cells as components of the tumor-induced stroma foster neovascularization in a self-amplifying loop.  相似文献   

17.
Recent genetic screens of fly mutants and molecular analysis have revealed that the Hippo (Hpo) pathway controls both cell proliferation and cell death. Deregulation of its human counterpart (the MST pathway) has been implicated in human cancers. However, how this pathway is linked with the known tumor suppressor network remains to be established. RUNX3 functions as a tumor suppressor of gastric cancer, lung cancer, bladder cancer, and colon cancer. Here, we show that RUNX3 is a principal and evolutionarily conserved component of the MST pathway. SAV1/WW45 facilitates the close association between MST2 and RUNX3. MST2, in turn, stimulates the SAV1-RUNX3 interaction. In addition, we show that siRNA-mediated RUNX3 knockdown abolishes MST/Hpo-mediated cell death. By establishing that RUNX3 is an endpoint effector of the MST pathway and that RUNX3 is capable of inducing cell death in cooperation with MST and SAV1, we define an evolutionarily conserved novel regulatory mechanism loop for tumor suppression in human cancers.  相似文献   

18.
Human monoclonal antibodies (mAbs) can routinely be isolated from phage display libraries against virtually any protein available in sufficient purity and quantity, but library design can influence epitope coverage on the target antigen. Here we describe the construction of a novel synthetic human antibody phage display library that incorporates hydrophilic or charged residues at position 52 of the CDR2 loop of the variable heavy chain domain, instead of the serine residue found in the corresponding germline gene. The novel library was used to isolate human mAbs to various antigens, including the alternatively-spliced EDA domain of fibronectin, a marker of tumor angiogenesis. In particular, the mAb 2H7 was proven to bind to a novel epitope on EDA, which does not overlap with the one recognized by the clinical-stage F8 antibody. F8 and 2H7 were used for the construction of chelating recombinant antibodies (CRAbs), whose tumor-targeting properties were assessed in vivo in biodistribution studies in mice bearing F9 teratocarcinoma, revealing a preferential accumulation at the tumor site.Key words: human antibody library, phage display, oncofetal fibronectin, vascular tumor targeting, scFv antibody fragments, chelating recombinant antibody (CRAb)  相似文献   

19.
Agrocybe aegerita lectin (AAL) was identified previously in our group as a novel galectin from medicinal fungi Agrocybe aegerita, and has been shown to effectively induce cancer cell cycle arrest and apoptosis in vitro and tumor regression in vivo. Here, AAL was observed to translocate into the HeLa cell nucleus and induce cell apoptosis when it was predominantly in the nucleus. The N-terminus and C-terminus of AAL were required for nuclear localization. Site mutated proteins were generated based on AAL structure. Dimer interface mutant I25G, carbohydrate recognition domain (CRD) mutant R63H, and loop region mutant L33A could not enter the nucleus and lost the ability to induce apoptosis. CRD mutant H59Q and loop region mutant I144G maintained nuclear localization activity, and H59Q retained residual bioability but I144G had no activity, indicating that nuclear localization is important but not sufficient for AAL to become apoptotically active. Our findings provide a novel antitumor mechanism of fungal galectin.  相似文献   

20.
Phosphotyrosine hydrolysis by protein tyrosine phosphatases (PTPs) involves substrate binding by the PTP loop and closure over the active site by the WPD loop. The E loop, located immediately adjacent to the PTP and WPD loops, is conserved among human PTPs in both sequence and structure, yet the role of this loop in substrate binding and catalysis is comparatively unexplored. Hematopoietic PTP (HePTP) is a member of the kinase interaction motif (KIM) PTP family. Compared to other PTPs, KIM-PTPs have E loops that are unique in both sequence and structure. In order to understand the role of the E loop in the transition between the closed state and the open state of HePTP, we identified a novel crystal form of HePTP that allowed the closed-state-to-open-state transition to be observed within a single crystal form. These structures, which include the first structure of the HePTP open state, show that the WPD loop adopts an ‘atypically open’ conformation and, importantly, that ligands can be exchanged at the active site, which is critical for HePTP inhibitor development. These structures also show that tetrahedral oxyanions bind at a novel secondary site and function to coordinate the PTP, WPD, and E loops. Finally, using both structural and kinetic data, we reveal a novel role for E-loop residue Lys182 in enhancing HePTP catalytic activity through its interaction with Asp236 of the WPD loop, providing the first evidence for the coordinated dynamics of the WPD and E loops in the catalytic cycle, which, as we show, is relevant to multiple PTP families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号