首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nucleotide Excision Repair in the Third Kingdom   总被引:4,自引:0,他引:4       下载免费PDF全文
Nucleotide excision repair, a general repair mechanism for removing DNA damage, is initiated by dual incisions bracketing the lesion. In procaryotes, the dual incisions result in excision of the damage in 12- to 13-nucleotide-long oligomers, and in eucaryotes they result in excision of the damage in the form of 24- to 32-nucleotide-long oligomers. We wished to find out if Archaea perform excision repair. Using cell extracts from Methanobacterium thermoautotrophicum, we found that this organism removes UV-induced (6-4) photoproducts in the form of 10- to 11-mers by incising the sixth to seventh phosphodiester bond 5′ to the damage and the fourth phosphodiester bond 3′ to the damage.  相似文献   

2.
Chlamydomonas reinhardtii is a prospective model system for understanding molecular mechanisms associated with DNA repair in plants and algae. To explore this possibility, we have developed an in vitro repair system from C. reinhardtii cell-free extracts that can efficiently repair UVC damage (Thymine-dimers) in the DNA. We observed that excision repair (ER) synthesis based nucleotide incorporation, specifically in UVC damaged supercoiled (SC) DNA, was followed by ligation of nicks. Photoreactivation efficiently competed out the ER in the presence of light. In addition, repair efficiency in cell-free extracts from ER deficient strains was several fold lower than that of wild-type cell extract. Interestingly, the inhibitor profile of repair DNA polymerase involved in C. reinhardtii in vitro ER system was akin to animal rather than plant DNA polymerase. The methodology to prepare repair competent cell-free extracts described in the current study can aid further molecular characterization of ER pathway in C. reinhardtii.  相似文献   

3.
维持基因组稳定是生物生存的基础。碱基切除修复(base excision repair,BER)是修复损伤DNA、维持基因组稳定的主要方式之一。碱基切除修复对结核分枝杆菌等胞内致病菌尤其重要。fpg编码碱基切除修复的关键酶。本文通过比较分枝杆菌的基因组,发现结核菌较其他非致病分枝杆菌具有更多的碱基切除修复基因。这提示碱基切除修复可能对结核菌在宿主体内存活和致病至关重要。这条途径也许是新结核病药物研发的重要靶标。  相似文献   

4.
中波紫外线(UVB)会对皮肤造成各种损伤,这些都根源于UVB对皮肤细胞DNA的光损伤。光损伤产物主要有环丁烷嘧啶二聚体(CPD)和64光产物(6-4PP)两类,还包括少量的氧化损伤。CPD和6-4PP的修复是由核苷酸切除修复(NER)执行的。NER可分为全基因组核苷酸切除修复(GGR)和转录耦联核苷酸切除修复(TCR)两个亚途径。识别因子XPC通过一种不直接识别损伤本身的机制在GGR识别过程中发挥作用;在TCR识别过程中强调了关键因子CSB单体及二聚体两种形式的转换。在染色质水平上,DDB介导的泛素化作用是NER识别过程中重要的调控要素。另外,完成使命的识别因子的最终走向也是NER途径中的一个重要环节。通过分析上述生化过程,较清楚地总结了GGR及TCR对UVB导致的光损伤的识别机制。  相似文献   

5.
Molecular Biology - The base and nucleotide excision DNA repair (BER and NER) systems are aimed at removing specific types of damaged DNA, i.e., oxidized, alkylated, or deaminated bases in the case...  相似文献   

6.
7.
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.Key Words: Ionizing radiation (IR), DNA damage, DSB repair, NER, MMR and cell cycle.  相似文献   

8.
The nuclear lamins play important roles in the structural organization and function of the metazoan cell nucleus. Recent studies on B-type lamins identified a requirement for lamin B1 (LB1) in the regulation of cell proliferation in normal diploid cells. In order to further investigate the function of LB1 in proliferation, we disrupted its normal expression in U-2 OS human osteosarcoma and other tumor cell lines. Silencing LB1 expression induced G1 cell cycle arrest without significant apoptosis. The arrested cells are unable to mount a timely and effective response to DNA damage induced by UV irradiation. Several proteins involved in the detection and repair of UV damage by the nucleotide excision repair (NER) pathway are down-regulated in LB1 silenced cells including DDB1, CSB and PCNA. We propose that LB1 regulates the DNA damage response to UV irradiation by modulating the expression of specific genes and activating persistent DNA damage signaling. Our findings are relevant to understanding the relationship between the loss of LB1 expression, DNA damage signaling, and replicative senescence.  相似文献   

9.
Cancer incidence increases with age and is driven by accumulation of mutations in the DNA. In many so-called premature aging disorders, cancer appears earlier and at elevated rates. These diseases are predominantly caused by genome instability and present with symptoms, including cancer, resembling “segments” of aging and are thus often referred to as “segmental progerias”. Two related segmental progerias, Cockayne syndrome (CS) and trichothiodystrophy (TTD), don’t fit this pattern. Although caused by defects in genome maintenance via the nucleotide excision DNA repair (NER) pathway and displaying severe progeroid symptoms, CS and TTD patients appear to lack any cancer predisposition. More strikingly, genetic defects in the same NER pathway, and in some cases even within the same gene, XPD, can also give rise to disorders with greatly elevated cancer rates but without progeria (xeroderma pigmentosum). In this review, we will discuss the connection between genome maintenance, aging and cancer in light of a new mouse model of XPD disease.  相似文献   

10.
11.
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 104 events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.  相似文献   

12.
Ahn B 《Molecules and cells》2000,10(5):592-597
The dual-incision nature of the reaction of UV-irradiated DNA catalyzed by the UvrABC complex potentially leads to excision of a damaged fragment. However, neither fragment release under nondenaturing conditions nor the UvrBC proteins are turned over. The addition of the UvrD protein to the incised DNA-UvrBC complex results in excision of the incised damaged strand and in the turnover of the UvrC protein. In an effort to better understand the involvement of UvrD in the excision step, immunoprecipitation was used to detect interacting proteins with UvrD in the DNA repair. In this communication, it is shown that UvrA and UvrB are precipitated with UvrD in solution but the UvrAB complex is not. In the incision complex, UvrB could be precipitated and the preincubation of UvrD with UvrB revealed an inhibitory effect on the turnover of the incision complex. These data imply that UvrB in the incision complex seems to recruit UvrD to the 3 incised site of the incised strand by protein-protein interaction and to allow initiation of unwinding by UvrD from the resulting nick in a 3 to 5 direction.  相似文献   

13.
Detection of Epstein-Barr Viral Genome in Nonproductive Cells   总被引:63,自引:0,他引:63  
Hybridization experiments have shown that EB viral DNA comprises between 0.06 and 1.6% of the total DNA of Burkitt lymphoma cells and established leucocyte cell lines.  相似文献   

14.
15.
16.
17.
18.
DNA damage recognition by the nucleotide excision repair pathway requires an initial step identifying helical distortions in the DNA and a proofreading step verifying the presence of a lesion. This proofreading step is accomplished in eukaryotes by the TFIIH complex. The critical damage recognition component of TFIIH is the XPD protein, a DNA helicase that unwinds DNA and identifies the damage. Here, we describe the crystal structure of an archaeal XPD protein with high sequence identity to the human XPD protein that reveals how the structural helicase framework is combined with additional elements for strand separation and DNA scanning. Two RecA-like helicase domains are complemented by a 4Fe4S cluster domain, which has been implicated in damage recognition, and an α-helical domain. The first helicase domain together with the helical and 4Fe4S-cluster–containing domains form a central hole with a diameter sufficient in size to allow passage of a single stranded DNA. Based on our results, we suggest a model of how DNA is bound to the XPD protein, and can rationalize several of the mutations in the human XPD gene that lead to one of three severe diseases, xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy.  相似文献   

19.
Animal and human studies have shown that low levels of folic acid are associated with an impaired DNA Repair Capacity (DRC) and an increased cancer risk. However, the molecular evidence that folic acid enhances the DRC of cultured human cells is still limited because of a paucity of in vitro studies. We investigated the effect of folic acid depletion in vitro on the DRC of human dermal fibroblasts derived from 17 donors of different ages. To assess the cellular Nucleotide Excision DRC, we used a modified Host Cell-Reactivation Assay (HCRA), adapted to the Fluorescence Activated Cell Sorting (FACS)-technology, which is highly sensitive in comparison to luminometer-technology and allows single cell based analysis. We used DsRed as a reporter (irradiated with UVC light) and pEGFP to control the performance of the transformations. Folic acid had a statistically significant effect on the DRC in all of the 17 donors, however, the levels varied considerably between individuals (2.0-19.6%). When the effect of folic acid substituted on the DRC was compared to donor age, we observed that there was less DNA repair in old donors compared to the younger donors, although this was only significant at lower levels.  相似文献   

20.
核苷酸剪切修复(NER)途径是维持生物体基因组稳定的重要机制。人着色性干皮病B组(xeroderma pigmentosum group B,XPB)基因又名ERCC3基因,它既是NER途径不可缺少的成员又是转录因子TFIIH的最大p89亚基。它是具有从3’端→5’端依赖ATP的单链DNA解旋酶活性的蛋白质,执行依赖DNA的ATP酶和解旋酶功能,在损伤DNA修复和基因转录中均起重要作用,并将两者有机偶联。该基因突变将导致3种不同的遗传疾病:着色性干皮病(xeroderma pigmentosum,XP),科凯恩氏综合征(cockayne’s syndrome,CS),毛发硫营养不艮(trichothiodystrophy,TTD)。其基因型通过在DNA修复和转录中的功能与表型联系起来。另外,XPB与p53存在物理和功能上的相互作用。现从XPB的3个方面即“一个基因,两种功能,3种疾病”作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号