首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelin-1 (ET-1) mediates physiological responses via endothelin A (ETA) and B (ETB) receptors, which may form homo- and heterodimers with unknown function. Here, we investigated ET-receptor dimerization using fluorescence resonance energy transfer (FRET) between receptors tagged with CFP (donor) and receptors tagged with tetracysteine-FlAsH (fluorescein arsenical hairpin) (acceptor) expressed in HEK293 cells. FRET efficiencies were 15%, 22%, and 27% for ETA/ETA, ETB/ETB and ETA/ETB, respectively, and dimerization was further supported by coimmunoprecipitation. For all dimer pairs, the natural but nonselective ligand ET-1 rapidly (≤30 s) reduced FRET by >50%, but did not detectably reduce coimmunoprecipitation. ET-1 stimulated a transient increase in intracellular Ca2+ ([Ca2+]i) lasting 1-2 min for both homodimer pairs, and these ET-1 actions on FRET and [Ca2+]i elevation were blocked by the appropriate subtype-selective antagonist. In contrast, ETA/ETB heterodimers mediated a sustained [Ca2+]i increase lasting >10 min, and required a combination of ETA and ETB antagonists to block the observed FRET and [Ca2+]i responses. The sensitive CFP/FlAsH FRET assay used here provides new insights into endothelin-receptor dimer function, and represents a unique approach to characterize G-protein-coupled receptor oligomers, including their pharmacology.  相似文献   

2.
Endothelin is one of the most potent vasoconstrictors known. It plays an important role in the regulation of vascular tone and in the development of many cardiovascular diseases. This study focuses on the receptor types and the Ca2+ mobilization responsible for endothelin-1 (ET-1) contraction in de-endothelialized pig coronary artery rings. ET-1 contracted the artery rings with an EC50 = 6.5 ± 1 nM and a maximum contraction which was 98.6 ± 9% of the contraction produced by 60 mM KCl. BQ123 (5 µM), an ETA antagonist, reversed 78 ± 3% of the ET-1 contraction (50 nM). IRL1620, a selective ETB agonist, produced 23 ± 3% of the total ET-1 contraction with an EC50 = 12.7 ± 2 nM. More than 85% of the contraction due to 100 nM IRL 1620 was inhibited by 200 nMBQ788, an ETB antagonist. Therefore, approximately 80% of the ET-1 contraction in this artery occurred via ETA receptors, and the other 20% was mediated by ETB receptors. To assess the Ca2+ pools utilized during the ET-1 response, ET-1 contraction was also examined in medium containing an L-type Ca2+ channel blocker nitrendipine, and in Ca2+ free medium containing 0.2 mM EGTA. In Ca2+ containing medium the contraction elicited by ET-1 was 98.6 ± 9% of the KCl contraction, however, in the presence 10 µM nitrendipine the ET-1 induced contraction was 54 ± 7% of the KCl contraction, and in Ca2+-free medium it was 13 ± 2%. Similarly, the IRL 1620 contractions in Ca2+ containing medium, in the presence of nitrendipine and in Ca2+-free medium were 22.4 ± 3%, 12 ± 3% and 11 ± 2% of the KCl response respectively. Thus, both ETA and ETB contractions utilize extracellular Ca2+ pools via L-type Ca2+ channels and other undefined route(s), as well as intracellular Ca2+ pools. In the pig coronary artery smooth muscle, ET-1 contractions occur predominantly via ETA receptors, with ETB receptors using similar Ca2+ mobilization pathways, but the ETB receptors appear to use the intracellular Ca2+ stores to a greater extent.  相似文献   

3.
Endothelin-1 is a recently discovered peptide mainly released from endothelial cells. Hypoxia and ischemia as well as numerous factors such as angiotensin 11, thrombin and transforming growth factor 1 stimulate the fomation of the peptide. On the other hand the synthesis of endothelin is inhibited by nitric oxide and atrial natriuretic peptide via the formation of cyclic guanosine monophosphate. Released from endothelial cells endothelin-1 mediates transient vasodilation followed by a profound and longlasting vasoconstriction. Endothelin is also a mitogen for smooth muscle proliferation. Endothelins exert their biological effects via activation of specific receptors. Two different receptors have been cloned from mammalian tissues (ETA and ETB receptors). On vascular smooth muscle cells both receptors mediate contractions. Endothelial cells only express ETB receptors linked to the formation of nitric oxide and/or prostacyclin formation. Increased plasma concentrations of endothelin-1 have been described in a variety of diseases such as pulmonary hypertension, arteriosclerosis, renal failure, acute coronary syndromes, heart failure, migraine and vascular diseases.Recently an increasing number of endothelin receptor antagonists have been synthetized, which have been shown to inhibit endothelin-mediated vasoconstriction. Clinical studies are now ongoing to elucidate the pathophysiologic role of endothelin and the potential benefit of the blockade of the system in different disease states.  相似文献   

4.
Cellular mechanisms responsible for the termination of ET-1 signal are poorly understood. In order to examine the hypothesis that nitric oxide serves as a physiological brake of ET- 1 signaling, Chinese hamster ovary (CHO) cells stably transfected with the ETA receptor cDNA (CHO-ET) were studied. CHO-ET responded to ET-1 with robust [Ca2+], transients and developed a long-lasting homologous desensitization. Donors of nitric oxide (NO), 3-morpholino-sydnonimine HCl(SIN-1), or sodium nitroprusside (SNP) reduced the amplitude of these responses, accelerated the rate of [Ca2+], recovery, and counteracted the development of homologous desensitization by a cyclic GMP-independent mechanism, suggesting an alternative mode for NO modulation of ET-1 responses. Stimulation of CHO-ET cells with mastoparan, a wasp venom acting directly on G proteins (bypassing receptor activation), was inhibited by NO, revealing a postreceptoral target for NO-induced modulation of [Ca2+] mobilization. Using a lys9-biotinylated ET-1 (ET-1 [BtK9]), binding sites were “mapped” in CHO-ET cells. Receptor-ligand complexes did not exhibit spontaneous dissociation during 60min observations. Quantitative fluorescence microscopy revealed that SNP or SIN-1 caused a rapid, concentration-dependent, and reversible dissociation of biotinylated ET- 1 from ETA receptor (EC50 = 75 μM and 6 μM, respectively), an effect that was not mimicked by 8-bromo-cyclic GMP. “Sandwich” co-culture of endothelial cells with CHO-ET showed that activation of NO production by endothelial cells similarly resulted in dissociation of ET-1 [BtK9] from ETA receptors. We hypothesize that NO plays a role in physiological termination of ET-1 signalling by dual mechanisms: (1) displacement of bound ET-1 from its receptor, thus preventing homologous desensitization, and (2) interference with the postreceptoral pathway for [Ca2+] mobilization, hence inhibiting end-responses to ET-1. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Endothelin-1 (ET-1) induces contraction of vascular smooth muscle through binding to endothelin type A receptor (ETAR). COS-7 cells stably expressing high levels of the ETAR were established (designated COS-7(ETAR)). The COS-7(ETAR) cell bound [125I]ET-1 with a Kd of 932 ± 161 pM and a Bmax of 74 ± 13 fmol/2 × 105 cells. [125I]ET-1 binding was inhibited by ET-1 and the ETAR antagonist BQ-610, but not by the endothelin type B receptor (ETBR) antagonist BQ-788. In clones expressing two ETAR mutants containing D46N or R53Q substitutions in the first extracellular domain of the receptor, [125I]ET-1 binding activity was dramatically reduced. This suggests that these single amino acid substitutions alter the three-dimensional structure of the ligand-binding domain of the ETAR. Using COS-7(ETAR) cell, we showed that Ca2+ or Mg2+ was essential for ET-1 binding to the ETAR and that ET-1 treatment induced postreceptor signaling, that is, intracellular accumulation of cyclic AMP (cAMP) and Ca2+ mobilization. The COS-7(ETAR) established in this study will be a useful tool for screening ET-1 antagonists for treating hypertension.  相似文献   

6.
This report describes K+ efflux, K+ and Ca2+ uptake responses to endothelins (ET-1 and ET-3) in cultured endothelium derived from capillaries of human brain (HBEC). ET-1 dose dependently increased K+ efflux, K+ and Ca2+ uptake in these cells. ET-1 stimulated K+ efflux occurred prior to that of K+ uptake. ET-3 was ineffective. The main contributor to the ET-1 induced K+ uptake was ouabain but not bumetanide-sensitive (Na+-K+-ATPase and Na+-K+-Cl cotransport activity, respectively). All tested paradigms of ET-1 effects in HBEC were inhibited by selective antagonist of ETA but not ETB receptors and inhibitors of phospholipase C and receptor-operated Ca2+ channels. Activation of protein kinase C (PKC) decreased whereas inhibition of PKC increased the ET-1 stimulated K+ efflux, K+ and Ca2+ uptake in HBEC. The results indicate that ET-1 affects the HBEC ionic transport systems through activation of ETA receptors linked to PLC and modulated by intracellular Ca2+ mobilization and PKC.  相似文献   

7.
Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway. Supported by the National Natural Science Foundation of China (Grant No. 200830870910).  相似文献   

8.

Background  

Endothelin-1 (ET-1) is a potent vasoactive peptide, which induces vasoconstriction and proliferation in vascular smooth muscle cells (VSMCs) through activation of endothelin type A (ETA) and type B (ETB) receptors. The extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein kinases (MAPK) are involved in ET-1-induced VSMC contraction and proliferation. This study was designed to investigate the ETA and ETB receptor intracellular signaling in human VSMCs and used phosphorylation (activation) of ERK1/2 as a functional signal molecule for endothelin receptor activity.  相似文献   

9.
Endothelins, ET-1, ET-2, and ET-3 are potent vasoconstricting and mitogenic 21-amino acid bicyclic peptides, which exert their effects upon binding to the ETA and ETB receptors. The ETA receptor mediates vasoconstriction and smooth muscle cell proliferation, and the ETB receptor mediates different effects in different tissues, including nitric oxide release from endothelial cells, and vasoconstriction in certain vascular cell types. Selective antagonists of endothelin receptor subtypes may prove useful in determining the role of endothelin in various tissue types and disease states, and hence as therapeutic agents for such diseases. The pyrrolidine carboxylic acid A-127722 has been disclosed as a potent and ETA-selective antagonist, and is currently undergoing clinical trials. In our efforts to find antagonists with altered selectivity (ETA-selective, ETB-selective, or nonselective), we investigated the SAR of the 2-substituent on the pyrrolidine. Compounds with alkyl groups at the 2-position possessed ETA selectivity improved over A-127722 (1400-fold selective), with the best of these compounds showing nearly 19,000-fold selectivity.  相似文献   

10.
Little is known about cerebral vasculature of capybara, which seems may serve as a natural model of studying changes in cerebral circulation due to internal carotid artery atrophy at animal sexual maturation. This is the first study of the light- and electron-immunocytochemical localisation of endothelin-1 (ET-1) and ETA and ETB endothelin receptors in the basilar artery of capybaras (6 to 12-month-old females and males) using an ExtrAvidin detection method. All animals examined showed similar patterns of immunoreactivity. Immunoreactivity for ET-1 was detected in the endothelium and adventitial fibroblasts, whilst immunoreactivity for ETA and ETB receptors was present in the endothelium, vascular smooth muscle, perivascular nerves and fibroblasts. In endothelial cells immunoreactivity to ET-1 was pronounced in the cytoplasm or on the granular endoplasmic reticulum. Similar patterns of immunolabelling were observed for ETA and ETB receptors, though cytoplasmic location of clusters of immunoprecipitate seems dominant. These results suggest that the endothelin system is present throughout the wall of the basilar artery of capybara.  相似文献   

11.
Obstructive sleep apnoea (OSA) is a risk factor for cardiovascular disorders and in some cases is complication of pulmonary hypertension. We simulated OSA by exposing rats to cyclic intermittent hypoxia (CIH) to investigate its effect on pulmonary vascular endothelial dysfunction. Sprague-Dawley Rats were exposed to CIH (FiO2 9% for 1 min, repeated every 2 min for 8 h/day, 7 days/wk for 3 wk), and the pulmonary arteries of normoxia and CIH treated rats were analyzed for expression of endothelin-1 (ET-1) and ET receptors by histological, immunohistochemical, RT-PCR and Western Blot analyses, as well as for contractility in response to ET-1. In the pulmonary arteries, ET-1 expression was increased, and ET-1 more potently elicited constriction of the pulmonary artery in CIH rats than in normoxic rats. Exposure to CIH induced marked endothelial cell damage associated with a functional decrease of endothelium-dependent vasodilatation in the pulmonary artery. Compared with normoxic rats, ETA receptor expression was increased in smooth muscle cells of the CIH rats, while the expression of ETB receptors was decreased in endothelial cells. These results demonstrated endothelium-dependent vasodilation was impaired and the vasoconstrictor responsiveness increased by CIH. The increased responsiveness to ET-1 induced by intermittent hypoxia in pulmonary arteries of rats was due to increased expression of ETA receptors predominantly, meanwhile, decreased expression of ETB receptors in the endothelium may also participate in it.  相似文献   

12.

Introduction

Previous studies have suggested that cerebrospinal fluid from patients with subarachnoid hemorrhage (SAH) leads to pronounced vasoconstriction in isolated arteries. We hypothesized that only cerebrospinal fluid from SAH patients with vasospasm would produce an enhanced contractile response to endothelin-1 in rat cerebral arteries, involving both endothelin ETA and ETB receptors.

Methods

Intact rat basilar arteries were incubated for 24 hours with cerebrospinal fluid from 1) SAH patients with vasospasm, 2) SAH patients without vasospasm, and 3) control patients. Arterial segments with and without endothelium were mounted in myographs and concentration-response curves for endothelin-1 were constructed in the absence and presence of selective and combined ETA and ETB receptor antagonists. Endothelin concentrations in culture medium and receptor expression were measured.

Results

Compared to the other groups, the following was observed in arteries exposed to cerebrospinal fluid from patients with vasospasm: 1) larger contractions at lower endothelin concentrations (p<0.05); 2) the increased endothelin contraction was absent in arteries without endothelium; 3) higher levels of endothelin secretion in the culture medium (p<0.05); 4) there was expression of ETA receptors and new expression of ETB receptors was apparent; 5) reduction in the enhanced response to endothelin after ETB blockade in the low range and after ETA blockade in the high range of endothelin concentrations; 6) after combined ETA and ETB blockade a complete inhibition of endothelin contraction was observed.

Conclusions

Our experimental findings showed that in intact rat basilar arteries exposed to cerebrospinal fluid from patients with vasospasm endothelin contraction was enhanced in an endothelium-dependent manner and was blocked by combined ETA and ETB receptor antagonism. Therefore we suggest that combined blockade of both receptors may play a role in counteracting vasospasm in patients with SAH.  相似文献   

13.
1. Interaction in the recognition of endothelin-1 (ET-1), a typical bivalent ET receptor-ligand, between ETA and ETB receptors was investigated in the rat anterior pituitary gland, using our quantitative receptor autoradiographic method with tissue sections preserving the cell-membrane structure and ET receptor-related compounds.2. In saturation binding studies with increasing concentrations (0.77–200 pM) of 125I-ET-1 (nonselective bivalent radioligand), 125I-ET-1 binding to the rat anterior pituitary gland was saturable and single with a K D of 71 pM and a B max of 120 fmol mg–1. When 1.0 M BQ-123 (ETA antagonist) was added to the incubation buffer, binding parameters were 8.3 pM of K D and 8.0 fmol mg–1 of B max, whereas 10 nM sarafotoxin S6c (ETB agonist) exerted little change in these binding parameters (K D, 72 pM; B max, 110 fmol mg–1).3. Competition binding studies with a fixed amount (3.8 pM) of 125I-ET-1 revealed that when 1.0 M BQ-123 was present in the incubation buffer, ETB receptor-related compounds such as sarafotoxin S6c, ET-3, IRL1620 (ETB agonist), and BQ-788 (ETB antagonist) competitively inhibited 125I-ET-1 binding with K is of 140, 18, 350 pM, and 14 nM, respectively, however, these compounds were not significant competitors for 125I-ET-1 binding in the case of absence of BQ-123.4. In cold-ligand saturation studies with a fixed amount (390 pM) of 125I-IRL 1620 (ETB radioligand), IRL1620 bound to a single population of the ETB receptor, and no change was observed in binding characteristics in the presence of 1.0 M BQ-123. 125I-IRL1620 binding was competitively inhibited by ET-1 and ET-3 in the absence of BQ-123, with K is of 20 and 29 pM, respectively, the affinities being much the same as those of 29 nM, in the presence of 1.0 M BQ-123.5. Two nonbivalent ETA antagonists, BQ-123 and PD151242, were highly sensitive and full competitors for 125I-ET-1 binding (5.0 pM), in the presence of 10 nM sarafotoxin S6c.6. Taken together with the present finding that mRNAs encoding the rat ETA and the ETB receptors are expressed in the anterior pituitary gland, we tentatively conclude that although there are ETA and ETB receptors with a functional binding capability for ET receptor-ligands, the ETB receptor does not independently recognize ET-1 without the aid of the ETA receptor. If this thesis is tenable, then ET-1 can bridge between the two receptors to form an ETA–ETB receptor heterodimer.  相似文献   

14.
The cardiac steroid ouabain, a known inhibitor of the sodium pump (Na+,K+-ATPase), has been shown to release endothelin from endothelial cells when used at concentrations below those that inhibit the pump. The present study addresses the question of which signaling pathways are activated by ouabain in endothelial cells. Our findings indicate that ouabain, applied at low concentrations to human umbilical cord endothelial cells (HUAECs), induces a reaction cascade that leads to translocation of endothelial nitric oxide synthase (eNOS) and to activation of phosphatidylinositol 3-kinase (PI3K). These events are followed by phosphorylation of Akt (also known as protein kinase B, or PKB) and activation of eNOS by phosphorylation. This signaling pathway, which results in increased nitric oxide (NO) production in HUAECs, is inhibited by the PI3K-specific inhibitor LY294002. Activation of the reaction cascade is not due to endothelin-1 (ET-1) binding to the ET-1 receptor B (ETB), since application of the ETB-specific antagonist BQ-788 did not have any effect on Akt or eNOS phosphorylation. The results shown here indicate that ouabain binding to the sodium pump results in the activation of the proliferation and survival pathways involving PI3K, Akt activation, stimulation of eNOS, and production of NO in HUAECs. Together with results from previous publications, the current investigation implies that the sodium pump is involved in vascular tone regulation.  相似文献   

15.
16.
17.
Endothelin (ET)-1 is an important peptide in cancer progression stimulating cellular proliferation, tumor angiogenesis and metastasis. ET-1 binds with high affinity to the ETA receptor (R) and ETBR on cancer cells. High levels of tumor ET-1 and ETAR are associated with poor survival of lung cancer patients. Here the effects of ET-1 on epidermal growth factor (EGF)R and HER2 transactivation were investigated using non-small cell lung cancer (NSCLC) cells. ETAR mRNA was present in all 10 NSCLC cell lines examined. Addition of ET-1 to NCI-H838 or H1975 cells increased EGFR, HER2 and ERK tyrosine phosphorylation within 2 min. The increase in EGFR and HER2 transactivation caused by ET-1 addition to NSCLC cells was inhibited by lapatinib (EGFR and HER2 tyrosine kinase inhibitor (TKI)), gefitinib (EGFR TKI), ZD4054 or BQ-123 (ETAR antagonist), GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor) or Tiron (superoxide scavenger). ET-1 addition to NSCLC cells increased cytosolic Ca2+ and reactive oxygen species. ET-1 increased NSCLC clonal growth, whereas BQ123, ZD4054, lapatinib or gefitinib inhibited proliferation. The results indicate that ET-1 may regulate NSCLC cellular proliferation in an EGFR- and HER2-dependent manner.  相似文献   

18.
19.
In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3−/− and caspase−/− mice in the presence of ET-1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET-1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET-1 effect. ET-1 decreased CC ACh-, sodium nitroprusside (SNP)-induced relaxation, and increased caspase-1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET-1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET-1-induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase-1 expression, while BQ788 increased caspase-1 and IL-1β levels in a concentration-dependent manner (100 nM–10 μM). Furthermore, tiron and BAPTA AM prevented ET-1-induced increase in caspase-1. In addition, BAPTA AM blocked ET-1-induced ROS generation. In conclusion, ET-1-induced erectile dysfunction depends on ETA- and ETB-mediated activation of NLRP3 in mouse CC via Ca2+-dependent ROS generation.  相似文献   

20.
《Life sciences》1997,61(25):PL397-PL401
The injection of endothelin-1 (ET-1) (2 pmol) into the dorsolateral periaqueductal gray area (PAG) of mice produces antinociceptive effect as underscored by increases in the latency time for the reaction to a hot plate. Pretreatment of the PAG area with bosentan (10 nmol) (a mixed ETA/ETB receptor antagonist), FR 139317 (5 nmol) (ETA receptor selective antagonist) or BQ-788 (5 nmol) (ETB receptor selective antagonist) greatly reduced the antinociceptive effect induced by ET-1. Therefore, ET-1 induces antinociceptive effects via both ETA/ETB receptors. In addition, since ET-antagonists lowered per se the control reaction time of the mice when administered alone to the PAG area, we would suggest that endogenous ET-1 acting within the PAG area contributes to the suppression of pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号