首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current study of Mycobacterium tuberculosis (MTB)-specific T and B cells, we found that MTB-specific peptides from early secreted antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) induced the expression of IL-21 predominantly in CD4+ T cells. A fraction of IL-21-expressing CD4+ T cells simultaneously expressed Th1 cytokines but did not secrete Th2 or Th17 cytokines, suggesting that MTB-specific IL-21-expressing CD4+ T cells were different from Th1, Th2 and Th17 subpopulations. The majority of MTB-specific IL-21-expressing CD4+ T cells co-expressed IFN-γ and IL-21+IFN-γ+CD4+ T cells exhibited obviously polyfunctionality. In addition, MTB-specific IL-21-expressing CD4+ T cells displayed a CD45RO+CD62LlowCCR7lowCD40LhighICOShigh phenotype. Bcl-6-expression was significantly higher in IL-21-expressing CD4+ T cells than IL-21-CD4+ T cells. Moreover, IL-12 could up-regulate MTB-specific IL-21 expression, especially the frequency of IL-21+IFN-γ+CD4+ T cells. Taken together, our results demonstrated that MTB-specific IL-21+IFN-γ+CD4+ T cells from local sites of tuberculosis (TB) infection could be enhanced by IL-12, which have the features of both Tfh and Th1 cells and may have an important role in local immune responses against TB infection.  相似文献   

2.
The level of bacterial activity is only poorly defined during asymptomatic Mycobacterium tuberculosis (MTB) infection. The objective was to study the capacity of a new biomarker, the expression of the T cell maturation marker CD27 on MTB-specific CD4 T cells, to identify active tuberculosis (TB) disease in subjects from a MTB and HIV endemic region. The frequency and CD27 expression of circulating MTB-specific CD4 T cells was determined in 96 study participants after stimulation with purified protein derivative (PPD) using intracellular cytokine staining for IFNgamma (IFNγ). Subjects were then stratified by their TB and HIV status. Within PPD responders, a CD27 phenotype was associated with active TB in HIV (p = 0.0003) and HIV+ (p = 0.057) subjects, respectively. In addition, loss of CD27 expression preceded development of active TB in one HIV seroconverter. Interestingly, in contrast to HIV subjects, MTB-specific CD4 T cell populations from HIV+ TB-asymptomatic subjects were often dominated by CD27 cells. These data indicate that down-regulation of CD27 on MTB-specific CD4 T cell could be used as a biomarker of active TB, potentially preceding clinical TB disease. Furthermore, these data are consistent with the hypothesis that late, chronic HIV infection is frequently associated with increased mycobacterial activity in vivo. The analysis of T cell maturation and activation markers might thus be a useful tool to monitor TB disease progression.  相似文献   

3.
HIV co-infection is an important risk factor for tuberculosis (TB) providing a powerful model in which to dissect out defective, protective and dysfunctional Mycobacterium tuberculosis (MTB)-specific immune responses. To identify the changes induced by HIV co-infection we compared MTB-specific CD4+ responses in subjects with active TB and latent TB infection (LTBI), with and without HIV co-infection. CD4+ T-cell subsets producing interferon-gamma (IFN-γ), interleukin-2 (IL-2) and tumour necrosis factor-alpha (TNF-α) and expressing CD279 (PD-1) were measured using polychromatic flow-cytometry. HIV-TB co-infection was consistently and independently associated with a reduced frequency of CD4+ IFN-γ and IL-2-dual secreting T-cells and the proportion correlated inversely with HIV viral load (VL). The impact of HIV co-infection on this key MTB-specific T-cell subset identifies them as a potential correlate of mycobacterial immune containment. The percentage of MTB-specific IFN-γ-secreting T-cell subsets that expressed PD-1 was increased in active TB with HIV co-infection and correlated with VL. This identifies a novel correlate of dysregulated immunity to MTB, which may in part explain the paucity of inflammatory response in the face of mycobacterial dissemination that characterizes active TB with HIV co-infection.  相似文献   

4.
New vaccines are needed to combat Mycobacterium tuberculosis (MTB) infections. The currently employed Bacillus Calmette‐Guérin vaccine is becoming ineffective, due in part to the emergence of multidrug‐resistant tuberculosis (MDR‐TB) strains and the reduced immune capacity in cases of HIV coinfection. CD8+ T cells play an important role in the protective immunity against MTB infections, and the identification of immunogenic CD8+ T cell epitopes specific for MTB is essential for the design of peptide‐based vaccines. To identify CD8+ T cell epitopes of MTB proteins, we screened a set of 94 MTB antigens for HLA class I A*11:01‐binding motifs. HLA‐A*11:01 is one of the most prevalent HLA molecules in Southeast Asians, and definition of T cell epitopes it can restrict would provide significant coverage for the Asian population. Peptides that bound with high affinity to purified HLA molecules were subsequently evaluated in functional assays to detect interferon‐γ release and CD8+ T cell proliferation in active pulmonary TB patients. We identified six novel epitopes, each derived from a unique MTB antigen, which were recognized by CD8+ T cells from active pulmonary TB patients. In addition, a significant level of epitope‐specific T cells could be detected ex vivo in peripheral blood mononuclear cells from active TB patients by an HLA‐A*11:01 dextramer carrying the peptide Rv3130c194‐204 (from the MTB triacylglycerol synthase Tgs1), which was the most frequently recognized epitope in our peptide library. In conclusion, this study identified six dominant CD8+ T cell epitopes that may be considered potential targets for subunit vaccines or diagnostic strategies against TB.  相似文献   

5.

Background

Diagnosis of pulmonary tuberculosis (PTB) in children is challenging due to difficulties in obtaining good quality sputum specimens as well as the paucibacillary nature of disease. Globally a large proportion of pediatric tuberculosis (TB) cases are diagnosed based only on clinical findings. Xpert MTB/RIF, a highly sensitive and specific rapid tool, offers a promising solution in addressing these challenges. This study presents the results from pediatric groups taking part in a large demonstration study wherein Xpert MTB/RIF testing replaced smear microscopy for all presumptive PTB cases in public health facilities across India.

Methods

The study covered a population of 8.8 million across 18 programmatic sub-district level tuberculosis units (TU), with one Xpert MTB/RIF platform established at each study TU. Pediatric presumptive PTB cases (both TB and Drug Resistant TB (DR-TB)) accessing any public health facilities in study area were prospectively enrolled and tested on Xpert MTB/RIF following a standardized diagnostic algorithm.

Results

4,600 pediatric presumptive pulmonary TB cases were enrolled. 590 (12.8%, CI 11.8–13.8) pediatric PTB were diagnosed. Overall 10.4% (CI 9.5–11.2) of presumptive PTB cases had positive results by Xpert MTB/RIF, compared with 4.8% (CI 4.2–5.4) who had smear-positive results. Upfront Xpert MTB/RIF testing of presumptive PTB and presumptive DR-TB cases resulted in diagnosis of 79 and 12 rifampicin resistance cases, respectively. Positive predictive value (PPV) for rifampicin resistance detection was high (98%, CI 90.1–99.9), with no statistically significant variation with respect to past history of treatment.

Conclusion

Upfront access to Xpert MTB/RIF testing in pediatric presumptive PTB cases was associated with a two-fold increase in bacteriologically-confirmed PTB, and increased detection of rifampicin-resistant TB cases under routine operational conditions across India. These results suggest that routine Xpert MTB/RIF testing is a promising solution to present-day challenges in the diagnosis of PTB in pediatric patients.  相似文献   

6.
BackgroundA critical challenge in providing TB care to People Living with HIV (PLHIV) is establishing an accurate bacteriological diagnosis. Xpert MTB/RIF, a highly sensitive and specific rapid tool, offers a promising solution in addressing these challenges. This study presents results from PLHIV taking part in a large demonstration study across India wherein upfront Xpert MTB/RIF testing was offered to all presumptive PTB cases in public health facilities.MethodThe study covered a population of 8.8 million across 18 sub-district level tuberculosis units (TU), with one Xpert MTB/RIF platform established at each TU. All HIV-infected patients suspected of TB (both TB and Drug Resistant TB (DR-TB)) accessing public health facilities in study area were prospectively enrolled and provided upfront Xpert MTB/RIF testing.Result2,787 HIV-infected presumptive pulmonary TB cases were enrolled and 867 (31.1%, 95% Confidence Interval (CI) 29.4‒32.8) HIV-infected TB cases were diagnosed under the study. Overall 27.6% (CI 25.9–29.3) of HIV-infected presumptive PTB cases were positive by Xpert MTB/RIF, compared with 12.9% (CI 11.6–14.1) who had positive sputum smears. Upfront Xpert MTB/RIF testing of presumptive PTB and DR-TB cases resulted in diagnosis of 73 (9.5%, CI 7.6‒11.8) and 16 (11.2%, CI 6.7‒17.1) rifampicin resistance cases, respectively. Positive predictive value (PPV) for rifampicin resistance detection was high 97.7% (CI 89.3‒99.8), with no significant difference with or without prior history of TB treatment.ConclusionThe study results strongly demonstrate limitations of using smear microscopy for TB diagnosis in PLHIV, leading to low TB and DR-TB detection which can potentially lead to either delayed or sub-optimal TB treatment. Our findings demonstrate the usefulness and feasibility of addressing this diagnostic gap with upfront of Xpert MTB/RIF testing, leading to overall strengthening of care and support package for PLHIV.  相似文献   

7.
Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax–infected patients display significant increase in circulating monocytes, which were defined as CD14+CD16 (classical), CD14+CD16+ (inflammatory), and CD14loCD16+ (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16+ cells, in particular the CD14+CD16+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14+CD16+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14+CD16+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection.  相似文献   

8.
Tuberculosis (TB) and human immunodeficiency virus type 1 (HIV‐1) infection are closely intertwined, with one‐quarter of TB/HIV coinfected deaths among people died of TB. Effector CD8+ T cells play a crucial role in the control of Mycobacterium tuberculosis (MTB) and HIV‐1 infection in coinfected patients. Adoptive transfer of a multitude of effector CD8+ T cells is an appealing strategy to impose improved anti‐MTB/HIV‐1 activity onto coinfected individuals. Due to extensive existence of heterologous immunity, that is, T cells cross‐reactive with peptides encoded by related or even very dissimilar pathogens, it is reasonable to find a single T cell receptor (TCR) recognizing both MTB and HIV‐1 antigenic peptides. In this study, a single TCR specific for both MTB Ag85B199‐207 peptide and HIV‐1 Env120‐128 peptide was screened out from peripheral blood mononuclear cells of a HLA‐A*0201+ healthy individual using complementarity determining region 3 spectratype analysis and transferred to primary CD8+ T cells using a recombinant retroviral vector. The bispecificity of the TCR gene‐modified CD8+ T cells was demonstrated by elevated secretion of interferon‐γ, tumour necrosis factor‐α, granzyme B and specific cytolytic activity after antigen presentation of either Ag85B199‐207 or Env120‐128 by autologous dendritic cells. To the best of our knowledge, this study is the first report proposing to produce responses against two dissimilar antigenic peptides of MTB and HIV‐1 simultaneously by transfecting CD8+ T cells with a single TCR. Taken together, T cells transduced with the additional bispecific TCR might be a useful strategy in immunotherapy for MTB/HIV‐1 coinfected individuals.  相似文献   

9.

Background

Th1 and Th17 responses are known to play an important role in immunity to pulmonary tuberculosis (PTB), although little is known about their role in extrapulmonary forms of tuberculosis (TB).

Methods

To identify the role of Th1, Th17, and Th22 cells in multi-focal TB lymphadenitis (TBL), we examined mycobacteria–specific immune responses in the whole blood of individuals with PTB (n = 20) and compared them with those with TBL (n = 25).

Results

Elevated frequencies of CD4+ T cells expressing IFN- γ, TNF-α, and IL-2 were present in individuals with TBL compared with those with PTB at baseline and in response to ESAT-6 and CFP-10. Similarly, increased frequencies of CD4+ T cells expressing IL-17A, IL-17F, and IFN-γ were also present in individuals with TBL at baseline and following ESAT-6 and CFP-10 stimulation although no significant difference in frequency of Th22 cells was observed. Finally, frequencies of Th1 (but not Th17) cells exhibited a significantly negative correlation with natural regulatory T cell frequencies at baseline.

Conclusions

Multi-focal TB lymphadenitis is therefore characterized by elevated frequencies of Th1 and Th17 cells, indicating that Th1 and Th17 responses in TB disease are probably correlates of disease severity rather than of protective immunity.  相似文献   

10.
Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB.  相似文献   

11.

Background

Effector CD4 T cells represent a key component of the host’s anti-tuberculosis immune defense. Successful differentiation and functioning of effector lymphocytes protects the host against severe M. tuberculosis (Mtb) infection. On the other hand, effector T cell differentiation depends on disease severity/activity, as T cell responses are driven by antigenic and inflammatory stimuli released during infection. Thus, tuberculosis (TB) progression and the degree of effector CD4 T cell differentiation are interrelated, but the relationships are complex and not well understood. We have analyzed an association between the degree of Mtb-specific CD4 T cell differentiation and severity/activity of pulmonary TB infection.

Methodology/Principal Findings

The degree of CD4 T cell differentiation was assessed by measuring the percentages of highly differentiated CD27low cells within a population of Mtb- specific CD4 T lymphocytes (“CD27lowIFN-γ+” cells). The percentages of CD27lowIFN-γ+ cells were low in healthy donors (median, 33.1%) and TB contacts (21.8%) but increased in TB patients (47.3%, p<0.0005). Within the group of patients, the percentages of CD27lowIFN-γ+ cells were uniformly high in the lungs (>76%), but varied in blood (12–92%). The major correlate for the accumulation of CD27lowIFN-γ+ cells in blood was lung destruction (r = 0.65, p = 2.7×10−7). A cutoff of 47% of CD27lowIFN-γ+ cells discriminated patients with high and low degree of lung destruction (sensitivity 89%, specificity 74%); a decline in CD27lowIFN-γ+cells following TB therapy correlated with repair and/or reduction of lung destruction (p<0.01).

Conclusions

Highly differentiated CD27low Mtb-specific (CD27lowIFN-γ+) CD4 T cells accumulate in the lungs and circulate in the blood of patients with active pulmonary TB. Accumulation of CD27lowIFN-γ+ cells in the blood is associated with lung destruction. The findings indicate that there is no deficiency in CD4 T cell differentiation during TB; evaluation of CD27lowIFN-γ+ cells provides a valuable means to assess TB activity, lung destruction, and tissue repair following TB therapy.  相似文献   

12.
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection.  相似文献   

13.
陈莹  徐平  戴二黑  张瑶 《微生物学报》2023,63(8):2948-2966
结核病(tuberculosis, TB)是由结核分枝杆菌(Mycobacterium tuberculosis, MTB)感染引起的慢性传染病,是仅次于正在暴发的新型冠状病毒肺炎(COVID-19)的第二大单一感染致死病因。COVID-19的大流行对TB的诊断及治疗造成了破坏性的影响,全球实现终结TB目标的进展偏离了轨道。因此,早诊断、早治疗依然是防控TB蔓延的关键。TB精准诊断一直受MTB抗原特异性、检测技术特异性和灵敏度的影响,因此亟需挖掘高特异性新抗原、开发新检测技术。随着蛋白质基因组学(proteogenomics)和质谱技术的快速发展,从临床体液、组织样本中高效、精准靶向检测MTB特异性已知、甚至新抗原的表达,以及监测治疗过程中的抗原表达量的动态变化,是TB诊断及治疗的发展趋势。在MTB标准菌株H37Rv的4 008个注释基因中(NC_000 962.3, NCBI),国内外报道的已注释抗原虽有140多个,但仅有极少的抗原应用于TB的筛查及辅助诊断,离世界卫生组织(World Health Organization, WHO)的诊断标准尚远。本文通过对MTB已报道抗原以及基...  相似文献   

14.
The human CD14+ monocyte compartment is composed by two subsets based on CD16 expression. We previously reported that this compartment is perturbed in tuberculosis (TB) patients, as reflected by the expansion of CD16+ monocytes along with disease severity. Whether this unbalance is beneficial or detrimental to host defense remains to be elucidated. Here in the context of active TB, we demonstrate that human monocytes are predisposed to differentiate towards an anti-inflammatory (M2-like) macrophage activation program characterized by the CD16+CD163+MerTK+pSTAT3+ phenotype and functional properties such as enhanced protease-dependent motility, pathogen permissivity and immunomodulation. This process is dependent on STAT3 activation, and loss-of-function experiments point towards a detrimental role in host defense against TB. Importantly, we provide a critical correlation between the abundance of the CD16+CD163+MerTK+pSTAT3+ cells and the progression of the disease either at the local level in a non-human primate tuberculous granuloma context, or at the systemic level through the detection of the soluble form of CD163 in human sera. Collectively, this study argues for the pathogenic role of the CD16+CD163+MerTK+pSTAT3+ monocyte-to-macrophage differentiation program and its potential as a target for TB therapy, and promotes the detection of circulating CD163 as a potential biomarker for disease progression and monitoring of treatment efficacy.  相似文献   

15.

Background

Circulating T follicular helper (Tfh) cells represent a distinct subset of CD4+ T cells and are important in immunity to infections. Although they have been shown to play a role in experimental models of tuberculosis infection, their role in human tuberculosis remains unexplored.

Aims/Methodology

To determine the distribution of circulating Tfh cells in human TB, we measured the frequencies of Tfh cells ex vivo and following TB - antigen or polyclonal stimulation in pulmonary TB (PTB; n = 30) and latent TB (LTB; n = 20) individuals, using the markers CXCR5, PD-1 and ICOS.

Results

We found that both ex vivo and TB - antigen induced frequencies of Tfh cell subsets was significantly lower in PTB compared to LTB individuals. Similarly, antigen induced frequencies of Tfh cells expressing IL-21 was also significantly lower in PTB individuals and this was reflected in diminished circulating levels of IL-21 and IFNγ. This was not accompanied by diminished frequencies of activated or memory B cell subsets. Finally, the diminution in frequency of Tfh cells in PTB individuals was dependent on IL-10, CTLA-4 and PD-L1 in vitro.

Conclusions

Thus, PTB is characterized by adiminution in the frequency of Tfh cell subsets.  相似文献   

16.

Background

Diagnosis of pulmonary tuberculosis (TB) among human immunodeficiency virus (HIV) patients remains complex and demands easy to perform and accurate tests. Xpert®MTB/RIF (MTB/RIF) is a molecular TB diagnostic test which is rapid and convenient; the test requires minimal human resources and reports results within two hours. The majority of performance studies of MTB/RIF have been performed in high HIV burden settings, thus TB diagnostic studies among HIV patients in low HIV prevalence settings such as Peru are still needed.

Methodology/Principal Findings

From April 2010 to May 2011, HIV-positive patients with high clinical suspicion of TB were enrolled from two tertiary hospitals in Lima, Peru. Detection of TB by MTB/RIF was compared to a composite reference standard Löwenstein-Jensen (LJ) and liquid culture. Detection of rifampicin resistance was compared to the LJ proportion method. We included 131 patients, the median CD4 cell count was 154.5 cells/mm3 and 45 (34.4%) had TB. For TB detection among HIV patients, sensitivity of MTB/RIF was 97.8% (95% CI 88.4–99.6) (44/45); specificity was 97.7% (95% CI 91.9–99.4) (84/86); the positive predictive value was 95.7% (95% CI 85.5–98.8) (44/46); and the negative predictive value, 98.8% (95% CI 93.6–99.8) (84/85). MTB/RIF detected 13/14 smear-negative TB cases, outperforming smear microscopy [97.8% (44/45) vs. 68.9% (31/45); p = 0.0002]. For rifampicin resistance detection, sensitivity of MTB/RIF was 100% (95% CI 61.0–100.0) (6/6); specificity was 91.0% (95% CI 76.4–96.9) (30/33); the positive predictive value was 66.7% (95% CI 35.4–87.9) (6/9); and the negative predictive value was 100% (95% CI 88.7 –100.0) (30/30).

Conclusions/Significance

In HIV patients in our population with a high clinical suspicion of TB, MTB/RIF performed well for TB diagnosis and outperformed smear microscopy.  相似文献   

17.
BackgroundEthiopia is one of the high tuberculosis (TB) burden countries. An analysis of trends and differentials in case notifications and treatment outcomes of TB may help improve our understanding of the performance of TB control services.MethodsA retrospective trend analysis of TB cases was conducted in the Sidama Zone in southern Ethiopia. We registered all TB cases diagnosed and treated during 2003–2012 from all health facilities in the Sidama Zone, and analysed trends of TB case notification rates and treatment outcomes.ResultsThe smear positive (PTB+) case notification rate (CNR) increased from 55 (95% CI 52.5–58.4) to 111 (95% CI 107.4–114.4) per 105 people. The CNRs of PTB+ in people older than 45 years increased by fourfold, while the mortality of cases during treatment declined from 11% to 3% for smear negative (PTB-) (X2trend, P<0.001) and from 5% to 2% for PTB+ (X2trend, P<0.001). The treatment success was higher in rural areas (AOR 1.11; CI 95%: 1.03–1.2), less for PTB- (AOR 0.86; CI 95%: 0.80–0.92) and higher for extra-pulmonary TB (AOR 1.10; CI 95%: 1.02–1.19) compared to PTB+. A higher lost-to-follow up was observed in men (AOR 1.15; CI 95%: 1.06–1.24) and among PTB- cases (AOR 1.14; CI 95%: 1.03–1.25). More deaths occurred in PTB-cases (AOR 1.65; 95% CI: 1.44–1.90) and among cases older than 65 years (AOR 3.86; CI 95%: 2.94–5.10). Lastly, retreatment cases had a higher mortality than new cases (6% vs 3%).ConclusionOver the past decade TB CNRs and treatment outcomes improved, whereas the disparities of disease burden by gender and place of residence reduced and mortality declined. Strategies should be devised to address higher risk groups for poor treatment outcomes.  相似文献   

18.

Objective

Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue.

Methods

164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses.

Results

There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (<200/μL, 200-500/μL, >500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (P<0.001). Immunologically, HIV-1+ATB group showed significantly lower numbers of ESAT-6-/CFP-10-specific IFN-γ+ T cells than HIV-1+LTB group. Consistently, PPD-specific IFN-γ+CD4+/CD8+ T effector cells in HIV-1+ATB group were significantly lower than those in HIV-1+LTB group (P<0.001).

Conclusions

Hierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.  相似文献   

19.
BackgroundXpert MTB/RIF, the first automated molecular test for tuberculosis, is transforming the diagnostic landscape in high-burden settings. This study assessed the impact of up-front Xpert MTB/RIF testing on detection of pulmonary tuberculosis (PTB) and rifampicin-resistant PTB (DR-TB) cases in India.MethodsThis demonstration study was implemented in 18 sub-district level TB programme units (TUs) in India in diverse geographic and demographic settings covering a population of 8.8 million. A baseline phase in 14 TUs captured programmatic baseline data, and an intervention phase in 18 TUs had Xpert MTB/RIF offered to all presumptive TB patients. We estimated changes in detection of TB and DR-TB, the former using binomial regression models to adjust for clustering and covariates.ResultsIn the 14 study TUs, which participated in both phases, 10,675 and 70,556 presumptive TB patients were enrolled in the baseline and intervention phase, respectively, and 1,532 (14.4%) and 14,299 (20.3%) bacteriologically confirmed PTB cases were detected. The implementation of Xpert MTB/RIF was associated with increases in both notification rates of bacteriologically confirmed TB cases (adjusted incidence rate ratio [aIRR] 1.39; CI 1.18-1.64), and proportion of bacteriological confirmed TB cases among presumptive TB cases (adjusted risk ratio (aRR) 1.33; CI 1.6-1.52). Compared with the baseline strategy of selective drug-susceptibility testing only for PTB cases at high risk of drug-resistant TB, Xpert MTB/RIF implementation increased rifampicin resistant TB case detection by over fivefold. Among, 2765 rifampicin resistance cases detected, 1055 were retested with conventional drug susceptibility testing (DST). Positive predictive value (PPV) of rifampicin resistance detected by Xpert MTB/RIF was 94.7% (CI 91.3-98.1), in comparison to conventional DST.ConclusionIntroduction of Xpert MTB/RIF as initial diagnostic test for TB in public health facilities significantly increased case-notification rates of all bacteriologically confirmed TB by 39% and rifampicin-resistant TB case notification by fivefold.  相似文献   

20.

Background

Hospitals in sub-Saharan Africa are inundated with HIV-infected patients and tuberculosis (TB) is the commonest opportunistic infection in this sub-group. Up to one third of TB-HIV co-infected patients fail to produce a sputum sample (sputum scarce) and diagnosis is thus often delayed or missed. We investigated the sensitivity of urine-based methods (Xpert MTB/RIF, LAM strip test and LAM ELISA) in such patients.

Methodology/Principal Findings

281 HIV-infected hospitalised patients with clinically suspected TB provided a spot urine sample. The reference standard was culture positivity for Mycobacterium tuberculosis on ≥1 sputum or extra-pulmonary sample. MTB/RIF was performed using 1 ml of both unprocessed and, when possible, concentrated urine. Each unconcentrated urine sample was also tested using the Clearview LAM ELISA and Alere LAM strip test. 42% (116/242) of patients had culture-proven TB. 18% (20/54) were sputum scarce. In sputum-scarce patients, the sensitivity of urine MTB/RIF and LAM ELISA was 40% (95%CI: 22–61) and 60% (95%CI: 39–78), respectively. Urine MTB/RIF specificity was 98% (95%CI: 95–100). Combined sensitivity of urine LAM ELISA and MTB/RIF was better than MTB/RIF alone [MTB/RIF and LAM: 70% (95%CI: 48–85) vs. MTB/RIF: 40% (95%CI: 22–61), p = 0.03]. Significant predictors of urine MTB/RIF positivity were CD4<50 cells/ml (p = 0.001), elevated protein-to-creatinine ratio (p<0.001) and LAM ELISA positivity (p<0.001). Urine centrifugation and pelleting significantly increased the sensitivity of MTB/RIF over unprocessed urine in paired samples [42% (95%CI: 26–58) vs. 8% (95%CI: 0–16), p<0.001]. Urine MTB/RIF-generated CT values correlated poorly with markers of bacillary burden (smear grade and time-to-positivity).

Conclusions/Significance

This preliminary study indicates that urine-based MTB/RIF, alone or in combination with LAM antigen detection, may potentially aid the diagnosis of TB in HIV-infected patients with advanced immunosuppression when sputum-based diagnosis is not possible. Concentration of urine prior to MTB/RIF-testing significantly improves sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号