首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymatic activity of the type 2A protein phosphatase (PP2A) holoenzyme, a major serine/threonine phosphatase in the heart, is conferred by its catalytic subunit (PP2AC). PP2AC activity and subcellular localisation can be regulated by reversible carboxylmethylation of its C-terminal leucine309 (leu309) residue. Previous studies have shown that the stimulation of adenosine type 1 receptors (A1.Rs) induces PP2AC carboxylmethylation and altered subcellular distribution in adult rat ventricular myocytes (ARVM). In the current study, we show that the enzymatic components that regulate the carboxylmethylation status of PP2AC, leucine carboxylmethyltransferase-1 (LCMT-1) and phosphatase methylesterase-1 (PME-1) are abundantly expressed in, and almost entirely localised in the cytoplasm of ARVM. The stimulation of Gi-coupled A1.Rs with N6-cyclopentyladenosine (CPA), and of other Gi-coupled receptors such as muscarinic M2 receptors (stimulated with carbachol) and angiotensin II AT2 receptors (stimulated with CGP42112) in ARVM, induced PP2AC carboxylmethylation at leu309 in a concentration-dependent manner. Exposure of ARVM to 10 µM CPA increased the cellular association between PP2AC and its methyltransferase LCMT-1, but not its esterase PME-1. Stimulation of A1.Rs with 10 µM CPA increased the phosphorylation of protein kinase B at ser473, which was abolished by the PI3K inhibitor LY294002 (20 µM), thereby confirming that PI3K activity is upregulated in response to A1.R stimulation by CPA in ARVM. A1.R-induced PP2AC translocation to the particulate fraction was abrogated by adenoviral expression of the alpha subunit (Gαt1) coupled to the transducin G-protein coupled receptor. A similar inhibitory effect on A1.R-induced PP2AC translocation was also seen with LY294002 (20 µM). These data suggest that in ARVM, A1.R-induced PP2AC translocation to the particulate fraction occurs through a GiPCR-Gβγ-PI3K mediated intracellular signalling pathway, which may involve elevated PP2AC carboxylmethylation at leu309.  相似文献   

2.
Glycoprotein (GP) VI is a critical platelet collagen receptor. Phosphoinositide 3-kinase (PI3K) plays an important role in GPVI-mediated platelet activation, yet the major PI3K isoforms involved in this process have not been identified. In addition, stimulation of GPVI results in the activation of Akt, a downstream effector of PI3K. Thus, we investigated the contribution of PI3K isoforms to GPVI-mediated platelet activation and Akt activation. A protein kinase C inhibitor GF 109203X or a P2Y12 receptor antagonist AR-C69931MX partly reduced GPVI-induced Akt phosphorylation. Platelets from mice dosed with clopidogrel also showed partial Akt phosphorylation, indicating that GPVI-mediated Akt phosphorylation is regulated by both secretion-dependent and -independent pathways. In addition, GPVI-induced Akt phosphorylation in the presence of ADP antagonists was completely inhibited by PI3K inhibitor LY294002 and PI3Kβ inhibitor TGX-221 indicating an essential role of PI3Kβ in Akt activation directly downstream of GPVI. Moreover, GPVI-mediated platelet aggregation, secretion, and intracellular Ca2+ mobilization were significantly inhibited by TGX-221, and less strongly inhibited by PI3Kα inhibitor PIK75, but were not affected by PI3Kγ inhibitor AS252424 and PI3Kδ inhibitor IC87114. Consistently, GPVI-induced integrin αIIbβ3 activation of PI3Kγ−/− and PI3Kδ−/− platelets also showed no significant difference compared with wild-type platelets. These results demonstrate that GPVI-induced Akt activation in platelets is dependent in part on Gi stimulation through P2Y12 receptor activation by secreted ADP. In addition, a significant portion of GPVI-dependent, ADP-independent Akt activation also exists, and PI3Kβ plays an essential role in GPVI-mediated platelet aggregation and Akt activation.  相似文献   

3.
The small chaperone protein Hsp27 confers resistance to apoptosis, and therefore is an attractive anticancer drug target. We report here a novel mechanism underlying the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitizing activity of the small molecule LY303511, an inactive analog of the phosphoinositide 3-kinase inhibitor inhibitor LY294002, in HeLa cells that are refractory to TRAIL-induced apoptosis. On the basis of the fact that LY303511 is derived from LY294002, itself derived from quercetin, and earlier findings indicating that quercetin and LY294002 affected Hsp27 expression, we investigated whether LY303511 sensitized cancer cells to TRAIL via a conserved inhibitory effect on Hsp27. We provide evidence that upon treatment with LY303511, Hsp27 is progressively sequestered in the nucleus, thus reducing its protective effect in the cytosol during the apoptotic process. LY303511-induced nuclear translocation of Hsp27 is linked to its sustained phosphorylation via activation of p38 kinase and MAPKAP kinase 2 and the inhibition of PP2A. Furthermore, Hsp27 phosphorylation leads to the subsequent dissociation of its large oligomers and a decrease in its chaperone activity, thereby further compromising the death inhibitory activity of Hsp27. Furthermore, genetic manipulation of Hsp27 expression significantly affected the TRAIL sensitizing activity of LY303511, which corroborated the Hsp27 targeting activity of LY303511. Taken together, these data indicate a novel mechanism of small molecule sensitization to TRAIL through targeting of Hsp27 functions, rather than its overall expression, leading to decreased cellular protection, which could have therapeutic implications for overcoming chemotherapy resistance in tumor cells.  相似文献   

4.
We examined mechanisms by which L-4F reduces obesity and diabetes in obese (ob) diabetic mice. We hypothesized that L-4F reduces adiposity via increased pAMPK, pAKT, HO-1, and increased insulin receptor phosphorylation in ob mice. Obese and lean mice were divided into five groups: lean, lean-L-4F-treated, ob, ob-L-4F-treated, and ob-L-4F-LY294002. Food intake, insulin, glucose adipocyte stem cells, pAMPK, pAKT, CB1, and insulin receptor phosphorylation were determined. Subcutaneous (SAT) and visceral adipose tissue (VAT) were determined by MRI and hepatic lipid content by magnetic resonance spectroscopy. SAT and VAT volumes decreased in ob-L-4F-treated animals compared with control. L-4F treatment decreased hepatic lipid content and increased the numbers of small adipocytes (P < 0.05) and phosphorylation of insulin receptors. L-4F decreased CB1 in SAT and VAT and increased pAKT and pAMPK in endothelium. L-4F-mediated improvement in endothelium was prevented by LY294002. Inhibition of pAKT and pAMPK by LY294002 was associated with an increase in glucose levels. Upregulation of HO-1 by L-4F produced adipose remodeling and increased the number of small differentiated adipocytes. The anti-obesity effects of L-4F are manifested by a decrease in visceral fat content with reciprocal increases in adiponectin, pAMPK, pAKT, and phosphorylation of insulin receptors with improved insulin sensitivity.  相似文献   

5.

Purpose

To investigate the effects of hypoxic conditioned media from rat cerebral cortical cells on the proliferation and differentiation of neural stem cells (NSCs) in vitro, and to study the roles of PI3-K/Akt and JNK signal transduction pathways in these processes.

Methods

Cerebral cortical cells from neonatal Sprague–Dawley rat were cultured under hypoxic and normoxic conditions; the supernatant was collected and named ‘hypoxic conditioned medium’ (HCM) and ‘normoxic conditioned medium’ (NCM), respectively. We detected the protein levels (by ELISA) of VEGF and BDNF in the conditioned media and mRNA levels (by RT-PCR) in cerebral cortical cells. The proliferation (number and size of neurospheres) and differentiation (proportion of neurons and astrocytes over total cells) of NSCs was assessed. LY294002 and SP600125, inhibitors of PI3-K/Akt and JNK, respectively, were applied, and the phosphorylation levels of PI3-K, Akt and JNK were measured by western blot.

Results

The protein levels and mRNA expressions of VEGF and BDNF in 4% HCM and 1% HCM were both higher than that of those in NCM. The efficiency and speed of NSCs proliferation was enhanced in 4% HCM compared with 1% HCM. The highest percentage of neurons and lowest percentage of astrocytes was found in 4% HCM. However, the enhancement of NSCs proliferation and differentiation into neurons accelerated by 4% HCM was inhibited by LY294002 and SP600125, with LY294002 having a stronger inhibitory effect. The increased phosphorylation levels of PI3-K, Akt and JNK in 4% HCM were blocked by LY294002 and SP600125.

Conclusions

4%HCM could promote NSCs proliferation and differentiation into high percentage of neurons, these processes may be mainly through PI3-K/Akt pathways.  相似文献   

6.
Dissemination of Bacillus anthracis from the respiratory mucosa is a critical step in the establishment of inhalational anthrax. Recent in vitro and in vivo studies indicated that this organism was able to penetrate the lung epithelium by directly entering into epithelial cells of the lung; however the molecular details of B. anthracis breaching the epithelium were lacking. Here, using a combination of pharmacological inhibitors, dominant negative mutants, and colocalization experiments, we demonstrated that internalization of spores by epithelial cells was actin-dependent and was mediated by the Rho-family GTPase Cdc42 but not RhoA or Rac1. Phosphatidylinositol 3-kinase (PI3K) activity was also required as indicated by the inhibitory effects of PI3K inhibitors, wortmannin and LY294002, and a PI3K dominant negative (DN) mutant Δp85α. In addition, spore entry into epithelial cells (but not into macrophages) required the activity of Src as indicated by the inhibitory effect of Src family kinase (SFK) inhibitors, PP2 and SU6656, and specific siRNA knockdown of Src. Enrichment of PI3K and F-actin around spore attachment sites was observed and was significantly reduced by treatment with SFK and PI3K inhibitors, respectively. Moreover, B. anthracis translocation through cultured lung epithelial cells was significantly impaired by SFK inhibitors, suggesting that this signaling pathway is important for bacterial dissemination. The effect of the inhibitor on dissemination in vivo was then evaluated. SU6656 treatment of mice significantly reduced B. anthracis dissemination from the lung to distal organs and prolonged the median survival time of mice compared to the untreated control group. Together these results described a signaling pathway specifically required for spore entry into epithelial cells and provided evidence suggesting that this pathway is important for dissemination and virulence in vivo.  相似文献   

7.
In this study, we addressed the direct effect of leucine on insulin signaling. In investigating the associated mechanisms, we found that leucine itself does not activate the classical Akt- or ERK1/2 MAP kinase-dependent signaling pathways but can facilitate the insulin-induced phosphorylations of Akt473 and ERK1/2 in a time- and dose-dependent manner in cultured hepatocytes. The leucine-facilitated insulin-induced phosphorylation of Akt at residue 473 was not affected by knocking down the key component of mTORC1 or -2 complexes but was blocked by inhibition of c-Src (PP2), PI3K (LY294002), Gαi protein (pertussis toxin or siRNA against Gαi1 gene, or β-arrestin 2 (siRNA)). Similarly, the leucine-facilitated insulin activation of ERK1/2 was also blunted by pertussis toxin. We further show that leucine facilitated the insulin-mediated suppression of glucose production and expression of key gluconeogenic genes in a Gαi1 protein-dependent manner in cultured primary hepatocytes. Together, these results show that leucine can directly facilitate insulin signaling through a Gαi protein-dependent intracellular signaling pathway. This is the first evidence showing that macronutrients like amino acid leucine can facilitate insulin signaling through G proteins directly.  相似文献   

8.

Background

Upon lipopolysaccharide (LPS) stimulation, activation of both the Toll-like receptor 4 (TLR4) and phosphoinositide 3-kinase (PI3K) pathways serves to balance proinflammatory and anti-inflammatory responses. Although the antagonist to TLR4 represents an emerging promising target for the treatment of sepsis; however, the role of the PI3K pathway under TLR4-null conditions is not well understood. This goal of this study was to investigate the effect of inhibition of PI3K on innate resistance to LPS toxicity in a murine model.

Results

The overall survival of the cohorts receiving intraperitoneal injections of 100, 500, or 1000 μg LPS from Escherichia coli serotype 026:B6 after 7 d was 100%, 10%, and 10%, respectively. In contrast, no mortality was noted after 500-μg LPS injection in Tlr4-/- mice. When the PI3K inhibitor LY294002 was injected (1 mg/25 g body weight) 1 h prior to the administration of LPS, the overall survival of the Tlr4-/- mice was 30%. In the Tlr4-/- mice, the LPS injection induced no NF-κB activation but an increased Akt phosphorylation in the lung and liver, when compared to that of the C57BL/6 mice. Injection of 500 μg LPS led to a significant induction in O2- detected by electron paramagnetic resonance (EPR) spin trapping spectroscopy in the lung and liver at 3 and 6 h in C57BL/6 but not Tlr4-/- mice. Addition of LY294002 only significantly increased the O2- level in the lung and liver of the Tlr4-/- mice but not in the C57BL/6 mice following 500-μg LPS injection. In addition, the serum IL-1β and IL-2 levels were more elevated in C57BL/6 mice than in Tlr4-/- mice. Notably, IL-1β and IL-2 were significantly increased in Tlr4-/- mice but not in the C57BL/6 mice when the PI3K pathway was inhibited by LY294002 prior to LPS injection.

Conclusions

In this study, we demonstrate that innate resistance to LPS toxicity in Tlr4-/- mice is impaired by inhibition of the PI3K pathway, with a corresponding increase in mortality and production of tissue O2- and inflammatory cytokines.  相似文献   

9.
CDDP [cisplatin or cis-diamminedichloroplatinum(II)] and CDDP-based combination chemotherapy have been confirmed effective against gastric cancer. However, CDDP efficiency is limited because of development of drug resistance. In this study, we found that PAK4 (p21-activated kinase 4) expression and activity were elevated in gastric cancer cells with acquired CDDP resistance (AGS/CDDP and MKN-45/CDDP) compared with their parental cells. Inhibition of PAK4 or knockdown of PAK4 expression by specific siRNA (small interfering RNA)-sensitized CDDP-resistant cells to CDDP and overcome CDDP resistance. Combination treatment of LY294002 [the inhibitor of PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B or PKB) pathway] or PD98509 {the inhibitor of MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] pathway} with PF-3758309 (the PAK4 inhibitor) resulted in increased CDDP efficacy compared with LY294002 or PD98509 alone. However, after the concomitant treatment of LY294002 and PD98509, PF-3758309 administration exerted no additional enhancement of CDDP cytotoxicity in CDDP-resistant cells. Inhibition of PAK4 by PF-3758309 could significantly suppress MEK/ERK and PI3K/Akt signalling in CDDP-resistant cells. Furthermore, inhibition of PI3K/Akt pathway while not MEK/ERK pathway could inhibit PAK4 activity in these cells. The in vivo results were similar with those of in vitro. In conclusion, these results indicate that PAK4 confers CDDP resistance via the activation of MEK/ERK and PI3K/Akt pathways. PAK4 and PI3K/Akt pathways can reciprocally activate each other. Therefore, PAK4 may be a potential target for overcoming CDDP resistance in gastric cancer.  相似文献   

10.
Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.  相似文献   

11.

Objective

Tetrameric α2-macroglobulin (α2M), a plasma panproteinase inhibitor, is activated upon interaction with a proteinase, and undergoes a major conformational change exposing a receptor recognition site in each of its subunits. Activated α2M (α2M*) binds to cancer cell surface GRP78 and triggers proliferative and antiapoptotic signaling. We have studied the role of α2M* in the regulation of mTORC1 and TORC2 signaling in the growth of human prostate cancer cells.

Methods

Employing immunoprecipitation techniques and Western blotting as well as kinase assays, activation of the mTORC1 and mTORC2 complexes, as well as down stream targets were studied. RNAi was also employed to silence expression of Raptor, Rictor, or GRP78 in parallel studies.

Results

Stimulation of cells with α2M* promotes phosphorylation of mTOR, TSC2, S6-Kinase, 4EBP, AktT308, and AktS473 in a concentration and time-dependent manner. Rheb, Raptor, and Rictor also increased. α2M* treatment of cells elevated mTORC1 kinase activity as determined by kinase assays of mTOR or Raptor immunoprecipitates. mTORC1 activity was sensitive to LY294002 and rapamycin or transfection of cells with GRP78 dsRNA. Down regulation of Raptor expression by RNAi significantly reduced α2M*-induced S6-Kinase phosphorylation at T389 and kinase activity in Raptor immunoprecipitates. α2M*-treated cells demonstrate about a twofold increase in mTORC2 kinase activity as determined by kinase assay of AktS473 phosphorylation and levels of p-AktS473 in mTOR and Rictor immunoprecipitates. mTORC2 activity was sensitive to LY294002 and transfection of cells with GRP78 dsRNA, but insensitive to rapamycin. Down regulation of Rictor expression by RNAi significantly reduces α2M*-induced phosphorylation of AktS473 phosphorylation in Rictor immunoprecipitates.

Conclusion

Binding of α2M* to prostate cancer cell surface GRP78 upregulates mTORC1 and mTORC2 activation and promotes protein synthesis in the prostate cancer cells.  相似文献   

12.

Background

Traumatic brain injury (TBI) induces a complex sequence of apopototic cascades that contribute to secondary tissue damage. The aim of this study was to investigate the effects of salidroside, a phenolic glycoside with potent anti-apoptotic properties, on behavioral and histological outcomes, brain edema, and apoptosis following experimental TBI and the possible involvement of the phosphoinositide 3-kinase/protein kinase B (PI3K)/Akt signaling pathway.

Methodology/Principal Findings

Mice subjected to controlled cortical impact injury received intraperitoneal salidroside (20, or 50 mg/kg) or vehicle injection 10 min after injury. Behavioral studies, histology analysis and brain water content assessment were performed. Levels of PI3K/Akt signaling-related molecules, apoptosis-related proteins, cytochrome C (CytoC), and Smac/DIABLO were also analyzed. LY294002, a PI3K inhibitor, was administered to examine the mechanism of protection. The protective effect of salidroside was also investigated in primary cultured neurons subjected to stretch injury. Treatment with 20 mg/kg salidroside_significantly improved functional recovery and reduced brain tissue damage up to post-injury day 28. Salidroside_also significantly reduced neuronal death, apoptosis, and brain edema at day 1. These changes were associated with significant decreases in cleaved caspase-3, CytoC, and Smac/DIABLO at days 1 and 3. Salidroside increased phosphorylation of Akt on Ser473 and the mitochondrial Bcl-2/Bax ratio at day 1, and enhanced phosphorylation of Akt on Thr308 at day 3. This beneficial effect was abolished by pre-injection of LY294002. Moreover, delayed administration of salidroside at 3 or 6 h post-injury reduced neuronal damage at day 1. Salidroside treatment also decreased neuronal vulnerability to stretch-induced injury in vitro.

Conclusions/Significance

Post-injury salidroside improved long-term behavioral and histological outcomes and reduced brain edema and apoptosis following TBI, at least partially via the PI3K/Akt signaling pathway.  相似文献   

13.
Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of curcumin against experimental stroke. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular expression of NAD(P)H: quinone oxidoreductase1 (NQO1) induced by OGD was counteracted by curcumin post-treatment, which paralleled attenuated cell injury. The reduction of phosphorylation Akt induced by OGD was restored by curcumin. Consequently, NQO1 expression and the binding activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) to antioxidant response element (ARE) were increased. LY294002 blocked the increase in phospho-Akt evoked by curcumin and abolished the associated protective effect. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 60 minutes. Curcumin administration significantly reduced infarct size. Curcumin also markedly reduced oxidative stress levels in middle cerebral artery occlusion (MCAO) rats; hence, these effects were all suppressed by LY294002. Taken together, these findings provide evidence that curcumin protects neurons against ischemic injury, and this neuroprotective effect involves the Akt/Nrf2 pathway. In addition, Nrf2 is involved in the neuroprotective effects of curcumin against oxidative damage.  相似文献   

14.
Varicella-zoster virus (VZV) activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and alters cell cycle progression, but the viral protein(s) responsible for these activities is unknown. We previously reported that the VZV open reading frame 12 (ORF12) protein triggers phosphorylation of ERK. Here, we demonstrate that the VZV ORF12 protein also activates the PI3K/Akt pathway to regulate cell cycle progression. Transfection of cells with a plasmid expressing the ORF12 protein induced phosphorylation of Akt, which was dependent on PI3K. Infection of cells with wild-type VZV triggered phosphorylation of Akt, while infection with an ORF12 deletion mutant induced less phosphorylated Akt. The activation of Akt by ORF12 protein was associated with its binding to the p85 subunit of PI3K. Infection of cells with wild-type VZV resulted in increased levels of cyclin B1, cyclin D3, and phosphorylated glycogen synthase kinase 3β (GSK-3β), while infection with the ORF12 deletion mutant induced lower levels of these proteins. Wild-type VZV infection reduced the G1 phase cell population and increased the M phase cell population, while infection with the ORF12 deletion mutant had a reduced effect on the G1 and M phase populations. Inhibition of Akt activity with LY294002 reduced the G1 and M phase differences observed in cells infected with wild-type and ORF12 mutant viruses. In conclusion, we have found that the VZV ORF12 protein activates the PI3K/Akt pathway to regulate cell cycle progression. Since VZV replicates in both dividing (e.g., keratinocytes) and nondividing (neurons) cells, the ability of the VZV ORF12 protein to regulate the cell cycle is likely important for VZV replication in various cell types in the body.  相似文献   

15.
Nardostahyos Radix et Rhizoma (NRR; the root and rhizome of Nardostachys jatamansi DC.) is a widely used medicinal herb. Historically, NRR is being used for the treatment of cardiovascular and neurological diseases. To search for active ingredients of NRR, we investigated the vascular benefit of NRR volatile oil in (i) the vasodilation in rat aorta ring, and (ii) the release of nitric oxide (NO) and the phosphorylation of endothelial NO synthase (eNOS) in cultured human umbilical vein endothelial cells (HUVECs). By measuring the fluorescence signal in cultures, application of NRR volatile oil resulted in a rapid activation of NO release as well as the phosphorylation of eNOS: both inductions were markedly reduced by L-NAME. In parallel, the phosphorylation level of Akt kinase was markedly increased by the oil treatment, which was partially attenuated by PI3K/Akt inhibitor LY294002. This inhibitor also blocked the NRR-induced NO production and eNOS phosphorylation. In HUVECs, application of NRR volatile oil elevated the intracellular Ca2+ level, and BAPTA-AM, a Ca2+ chelator, reduced the Ca2+ surge: the blockage were also applied to NRR-induced eNOS phosphorylation and NO production. These findings suggested the volatile oil of NRR was the major ingredient in triggering the vascular dilatation, and which was mediated via the NO production.  相似文献   

16.
Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) N-methylates nicotinamide to produce 1-methylnicotinamide (MeN). We have previously shown that NNMT expression protected against neurotoxin-mediated cell death by increasing Complex I (CxI) activity, resulting in increased ATP synthesis. This was mediated via protection of the NDUFS3 subunit of CxI from degradation by increased MeN production. In the present study, we have investigated the effects of NNMT expression on neurone morphology and differentiation. Expression of NNMT in SH-SY5Y human neuroblastoma and N27 rat mesencephalic dopaminergic neurones increased neurite branching, synaptophysin expression and dopamine accumulation and release. siRNA gene silencing of ephrin B2 (EFNB2), and inhibition of Akt phosphorylation using LY294002, demonstrated that their sequential activation was responsible for the increases observed. Incubation of SH-SY5Y with increasing concentrations of MeN also increased neurite branching, suggesting that the effects of NNMT may be mediated by MeN. NNMT had no significant effect on the expression of phenotypic and post-mitotic markers, suggesting that NNMT is not involved in determining phenotypic fate or differentiation status. These results demonstrate that NNMT expression regulates neurone morphology in vitro via the sequential activation of the EFNB2 and Akt cellular signalling pathways.  相似文献   

17.

Aims

This study is to investigate the mechanisms by which macrophage-activating lipopeptide-2 (MALP-2) induces heme oxygenase (HO)-1, a cytoprotective enzyme that catalyzes the degradation of heme, in human monocytes.

Methods

Human monocytic THP-1 cells were cultured for transient transfection with plasmids and stimulation with MALP-2 for indicative time intervals. After incubation with MALP-2, cells were collected and disrupted, before being tested for promoter activity using luciferase assay. For analysis of proteins, immunoreactive bands were detected using an enhanced chemiluminescence Western blotting system, and the band intensity was measured by densitometryic analysis. For the detection of co-immunoprecipitation, SDS-PAGE was performed and the membranes were probed using respective antibodies. To investigate the cellular localization of NF-E2-related factor 2 (Nrf2), cells underwent immunofluorescence staining and confocal microscopy, and were analyzed using electrophoretic mobility shift assay.

Results

MALP-2-induced HO-1 expression and promoter activity were abrogated by transfection with dominant negative (DN) plasmids of TLR2 and TLR6, or their neutralizing antibodies. However, inhibition of MyD88 or transfection with the DN-MyD88 was insufficient to attenuate HO-1 expression. In contrast, mutation or silencing of MyD88 adapter-like (Mal) by DN-Mal or siRNA almost completely blocked HO-1 induction. Btk, c-Src and PI3K were also involved in MALP-2-induced HO-1 expression, as revealed by specific inhibitors LFM-A13, PP1 and LY294002, or by transfection with siRNA of c-Src. MALP-2-induced activation of PI3K was attenuated by transfection with DN mutant of Mal, and by pretreatment with LFM-A13 or PP1. Furthermore, MALP-2 stimulated the translocation of Nrf2 from the cytosol to the nucleus and Nrf2 binding to the ARE site in the HO-1 promoter, which could also be inhibited by pretreatment with a PI3K inhibitor, LY294002.

Conclusions

These results indicated that MALP-2 required TLR2/6, Btk, Mal and c-Src to activate PI3K, which in turn initiated the activation of Nrf2 for efficient HO-1 induction.  相似文献   

18.
19.

Background

TRAIL/Apo2L is a pro-apoptotic ligand of the TNF family that engages the apoptotic machinery through two pro-apoptotic receptors, TRAIL-R1 and TRAIL-R2. This cell death program is tightly controlled by two antagonistic receptors, TRAIL-R3 and TRAIL-R4, both devoid of a functional death domain, an intracellular region of the receptor, required for the recruitment and the activation of initiator caspases. Upon TRAIL-binding, TRAIL-R4 forms a heteromeric complex with the agonistic receptor TRAIL-R2 leading to reduced caspase-8 activation and apoptosis.

Methodology/Principal Findings

We provide evidence that TRAIL-R4 can also exhibit, in a ligand independent manner, signaling properties in the cervical carcinoma cell line HeLa, through Akt. Ectopic expression of TRAIL-R4 in HeLa cells induced morphological changes, with cell rounding, loss of adherence and markedly enhanced cell proliferation in vitro and tumor growth in vivo. Disruption of the PI3K/Akt pathway using the pharmacological inhibitor LY294002, siRNA targeting the p85 regulatory subunit of phosphatidylinositol-3 kinase, or by PTEN over-expression, partially restored TRAIL-mediated apoptosis in these cells. Moreover, the Akt inhibitor, LY294002, restituted normal cell proliferation index in HeLa cells expressing TRAIL-R4.

Conclusions/Significance

Altogether, these results indicate that, besides its ability to directly inhibit TRAIL-induced cell death at the membrane, TRAIL-R4 can also trigger the activation of signaling pathways leading to cell survival and proliferation in HeLa cells. Our findings raise the possibility that TRAIL-R4 may contribute to cervical carcinogenesis.  相似文献   

20.
ObjectiveTo investigate the effect of ursolic acid on autophagy mediated through the miRNA-21-targeted phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in rat mesangial cells cultured under high glucose (HG) conditions.MethodsRat glomerular mesangial cells were cultured under normal glucose, HG, HG with the PI3K inhibitor LY294002 or HG with ursolic acid conditions. Cell proliferation and hypertrophy were assayed using an MTT assay and the ratio of total protein to cell number, respectively. The miRNA-21 expression was detected using RT-qPCR. The expression of phosphatase and tensin homolog (PTEN)/AKT/mTOR signaling signatures, autophagy-associated protein and collagen I was detected by western blotting and RT-qPCR. Autophagosomes were observed using electron microscopy.ResultsCompared with mesangial cells cultured under normal glucose conditions, the cells exposed to HG showed up-regulated miRNA-21 expression, down-regulated PTEN protein and mRNA expression, up-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and down-regulated LC3II expression. Ursolic acid and LY294002 inhibited HG-induced mesangial cell hypertrophy and proliferation, down-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and up-regulated LC3II expression. However, LY294002 did not affect the expression of miRNA-21 and PTEN. Ursolic acid down-regulated miRNA-21 expression and up-regulated PTEN protein and mRNA expression.ConclusionsUrsolic acid inhibits the glucose-induced up-regulation of mesangial cell miRNA-21 expression, up-regulates PTEN expression, inhibits the activation of PI3K/Akt/mTOR signaling pathway, and enhances autophagy to reduce the accumulation of the extracellular matrix and ameliorate cell hypertrophy and proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号