首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of organellar fusion and fission by Ca2+ has emerged as a central paradigm in intracellular membrane traffic. Originally formulated for Ca2+-driven SNARE-mediated exocytosis in the presynaptic terminals, it was later expanded to explain membrane traffic in other exocytic events within the endo-lysosomal system. The list of processes and conditions that depend on the intracellular membrane traffic includes aging, antigen and lipid processing, growth factor signaling and enzyme secretion. Characterization of the ion channels that regulate intracellular membrane fusion and fission promises novel pharmacological approaches in these processes when their function becomes aberrant. The recent identification of Ca2+ permeability through the intracellular ion channels comprising the mucolipin (TRPMLs) and the two-pore channels (TPCs) families pinpoints the candidates for the Ca2+ channel that drive intracellular membrane traffic. The present review summarizes the recent developments and the current questions relevant to this topic.  相似文献   

2.
Lysosomes and lysosome-related organelles are emerging as intracellular Ca2+ stores and play important roles in a variety of membrane trafficking processes, including endocytosis, exocytosis, phagocytosis and autophagy. Impairment of lysosomal Ca2+ homeostasis and membrane trafficking has been implicated in many human diseases such as lysosomal storage diseases (LSDs), neurodegeneration, myopathy and cancer. Lysosomal membrane proteins, in particular ion channels, are crucial for lysosomal Ca2+ signaling. Compared with ion channels in the plasma membrane, lysosomal ion channels and their roles in lysosomal Ca2+ signaling are less understood, largely due to their intracellular localization and the lack of feasible functional assays directly applied to the native environment. Recent advances in biomedical methodology have made it possible to directly investigate ion channels in the lysosomal membrane. In this review, we provide a summary of the newly developed methods for monitoring lysosomal Ca2+ and ion channels, as well as the recent discovery of lysosomal ion channels and their significances in intracellular Ca2+ signaling. These new techniques will expand our research scope and our understanding of the nature of lysosomes and lysosome-related diseases.  相似文献   

3.
The major players in the processes of cellular mechanotransduction are considered to be mechanosensitive (MS) or mechano-gated ion channels. Non-selective Ca2+-permeable channels, whose activity is directly controlled by membrane stretch (stretch-activated channels, SACs) are ubiquitously present in mammalian cells of different origin. Ca2+ entry mediated by SACs presumably has a significant impact on various Ca2+-dependent intracellular and membrane processes. It was proposed that SACs could play a crucial role in the different cellular reactions and pathologies, including oncotransformation, increased metastatic activity and invasion of malignant cells. In the present work, coupling of ion channels in transformed fibroblasts in course of stretch activation was explored with the use of patch-clamp technique. The combination of cell-attached and inside-out single-current experiments showed that Ca2+ influx via SACs triggered the activity of Ca2+-sensitive K+ channels indicating functional compartmentalization of different channel types in plasma membrane. Importantly, the analysis of single channel behavior demonstrated that K+ currents could be activated by the rise of intracellular calcium but displayed no direct mechanosensitivity. Taken together, our data imply that local changes in Ca2+ concentration due to SAC activity may provide a functional link between various Ca2+-dependent molecules in the processes of cellular mechanotransduction.  相似文献   

4.
The transient receptor potential (TRP) multigene superfamily encodes integral membrane proteins that function as ion channels. Members of this family are conserved in yeast, invertebrates and vertebrates. The TRP family is subdivided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin) and TRPN (NOMPC-like); the latter is found only in invertebrates and fish. TRP ion channels are widely expressed in many different tissues and cell types, where they are involved in diverse physiological processes, such as sensation of different stimuli or ion homeostasis. Most TRPs are non-selective cation channels, only few are highly Ca2+ selective, some are even permeable for highly hydrated Mg2+ ions. This channel family shows a variety of gating mechanisms, with modes of activation ranging from ligand binding, voltage and changes in temperature to covalent modifications of nucleophilic residues. Activated TRP channels cause depolarization of the cellular membrane, which in turn activates voltage-dependent ion channels, resulting in a change of intracellular Ca2+ concentration; they serve as gatekeeper for transcellular transport of several cations (such as Ca2+ and Mg2+), and are required for the function of intracellular organelles (such as endosomes and lysosomes). Because of their function as intracellular Ca2+ release channels, they have an important regulatory role in cellular organelles. Mutations in several TRP genes have been implicated in diverse pathological states, including neurodegenerative disorders, skeletal dysplasia, kidney disorders and pain, and ongoing research may help find new therapies for treatments of related diseases.  相似文献   

5.
The effects of pharmacological interventions that modulate Ca2+ homeodynamics and membrane potential in rat isolated cerebral vessels during vasomotion (i.e., rhythmic fluctuations in arterial diameter) were simulated by a third-order system of nonlinear differential equations. Independent control variables employed in the model were [Ca2+] in the cytosol, [Ca2+] in intracellular stores, and smooth muscle membrane potential. Interactions between ryanodine- and inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores and transmembrane ion fluxes via K+ channels, Cl channels, and voltage-operated Ca2+ channels were studied by comparing simulations of oscillatory behavior with experimental measurements of membrane potential, intracellular free [Ca2+] and vessel diameter during a range of pharmacological interventions. The main conclusion of the study is that a general model of vasomotion that predicts experimental data can be constructed by a low-order system that incorporates nonlinear interactions between dynamical control variables.  相似文献   

6.
Calcium (Ca2+) signals are essential transducers and regulators in many adaptive and developmental processes in plants. Protective responses of plants to a variety of environmental stress factors are mediated by transient changes of Ca2+ concentration in plant cells. Ca2+ ions are quickly transported by channel proteins present on the plasma membrane. During responses to external stimuli, various signal molecules are transported directly from extracellular to intracellular compartments via Ca2+ channel proteins. Three types of Ca2+ channels have been identified in plant cell membranes: voltage-dependent Ca2+-permeable channels (VDCCs), which is sorted to depolarization-activated Ca2+-permeable channels (DACCs) and hyperpolarization-activated Ca2+-permeable channels (HACCs), voltage-independent Ca2+-permeable channels (VICCs). They make functions in the abiotic stress such as TPCs, CNGCs, MS channels, annexins which distribute in the organelles, plasma membrane, mitochondria, cytosol, intracelluar membrane. This review summarizes recent advances in our knowledge of many types of Ca2+ channels and Ca2+ signals involved in abiotic stress resistance and responses in plant cells.  相似文献   

7.
An increase in the intracellular calcium ion concentration ([Ca2+]) impacts a diverse range of cell functions, including adhesion, motility, gene expression and proliferation. Elevation of intracellular calcium ion (Ca2+) regulates various cellular events after the stimulation of cells. Initial increase in Ca2+ comes from the endoplasmic reticulum (ER), intracellular storage space. However, the continuous influx of extracellular Ca2+ is required to maintain the increased level of Ca2+ inside cells. Store-operated Ca2+ entry (SOCE) manages this process, and STIM1, a newly discovered molecule, has a unique and essential role in SOCE. STIM1 can sense the exhaustion of Ca2+ in the ER, and activate the SOC channel in the plasma membrane, leading to the continuous influx of extracellular Ca2+. STIM1 senses the status of the intracellular Ca2+ stores via a luminal N-terminal Ca2+-binding EF-hand domain. Dissociation of Ca2+ from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca2+ channels/entry (calcium-release-activated calcium channels/entry). In this review, we summarize the mechanism by which STIM1 regulates SOCE, and also its role in the control of mast cell functions and allergic responses.  相似文献   

8.
Recently, it has become possible to record the localized fluorescence transient associated with the opening of a single plasma membrane Ca2+ permeable ion channel using Ca2+ indicators like fluo-3. These Single Channel Ca2+ Fluorescence Transients (SCCaFTs) share some of the characteristics of such elementary events as Ca2+ sparks and Ca2+ puffs caused by Ca2+ release from intracellular stores (due to the opening of ryanodine receptors and IP3 receptors, respectively). In contrast to intracellular Ca2+ release events, SCCaFTs can be observed while simultaneously recording the unitary channel currents using patch-clamp techniques to verify the channel openings. Imaging SCCaFTs provides a way to examine localized Ca2+ handling in the vicinity of a channel with a known Ca2+ influx, to obtain the Ca2+ current passing through plasma membrane cation channels in near physiological solutions, to localize Ca2+ permeable ion channels on the plasma membrane, and to estimate the Ca2+ currents underlying those elementary events where the Ca2+ currents cannot be recorded. Here we review studies of these fluorescence transients associated with caffeine-activated channels, L-type Ca2+ channels, and stretch-activated channels. For the L-type Ca2+ channel, SCCaFTs have been termed sparklets. In addition, we discuss how SCCaFTs have been used to estimate Ca2+ currents using the rate of rise of the fluorescence transient as well as the signal mass associated with the total fluorescence increase.  相似文献   

9.
This study examined the effect of menthol, an agonist for transient receptor potential melastatin 8 (TRPM8) ion channels, to increase intracellular Ca2+ concentration, [Ca2+]i, in human glioblastoma cells (DBTRG cells), which resulted in activation of the large-conductance Ca2+-activated K+ membrane ion channels (BK channels). Voltage ramps applied over 300 ms from -100 to 100 mV resulted in membrane currents with marked inwardly- and outwardly-rectifying components. Paxilline (2 μM) abolished the outwardly-rectifying current. Outwardly-rectifying on-cell patch currents were increased markedly by menthol (100 μM) added to the bath. The estimated on-cell conductance of these channels was 253 pS. Kinetic analysis showed that added menthol increased channel open probability and mean open frequency after 5 min. In a similar time course menthol increased [Ca2+]i, and this increase was abolished either by added paxilline, tetraethylammonium ion or by Ca2+-free external solution. Finally, menthol stimulated the rate of DBTRG cell migration into scratch wounds made in confluent cells, and this also was inhibited by paxilline or by tetraethylammonium ion. We conclude that menthol, a TRPM8 agonist, increases DBTRG cell [Ca2+]i that in turn activates membrane BK ion channels. Inhibition of BK channels by paxilline reverses menthol-stimulated increase of [Ca2+]i and of cell migration. Thus, BK channels function to maintain elevations in [Ca2+]i needed to sustain increases in DBTRG cell migration.  相似文献   

10.
L-type CaV1.2 channels are key regulators of gene expression, cell excitability and muscle contraction. CaV1.2 channels organize in clusters throughout the plasma membrane. This channel organization has been suggested to contribute to the concerted activation of adjacent CaV1.2 channels (e.g. cooperative gating). Here, we tested the hypothesis that dynamic intracellular and perimembrane trafficking of CaV1.2 channels is critical for formation and dissolution of functional channel clusters mediating cooperative gating. We found that CaV1.2 moves in vesicular structures of circular and tubular shape with diverse intracellular and submembrane trafficking patterns. Both microtubules and actin filaments are required for dynamic movement of CaV1.2 vesicles. These vesicles undergo constitutive homotypic fusion and fission events that sustain CaV1.2 clustering, channel activity and cooperative gating. Our study suggests that CaV1.2 clusters and activity can be modulated by diverse and unique intracellular and perimembrane vesicular dynamics to fine-tune Ca2+ signals.  相似文献   

11.
Many physiological processes are controlled by a great diversity of Ca2 + signals that depend on Ca2 + entry into the cell and/or Ca2 + release from internal Ca2 + stores. Ca2 + mobilization from intracellular stores is gated by a family of messengers including inositol-1,4,5-trisphosphate (InsP3), cyclic ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP). There is increasing evidence for a novel intracellular Ca2 + release channel that may be targeted by NAADP and that displays properties distinctly different from the well-characterized InsP3 and ryanodine receptors. These channels appear to localize on a wider range of intracellular organelles, including the acidic Ca2 + stores. Activation of the NAADP-sensitive Ca2 + channels evokes complex changes in cytoplasmic Ca2 + levels by means of channel chatter with other intracellular Ca2 + channels. The recent demonstration of changes in intracellular NAADP levels in response to physiologically relevant extracellular stimuli highlights the significance of NAADP as an important regulator of intracellular Ca2 + signaling.  相似文献   

12.
Intra-endolysosomal Ca2+ release is required for endolysosomal membrane fusion with intracellular organelles. However, the molecular mechanisms for intra-endolysosomal Ca2+ release and the downstream Ca2+ targets involved in the fusion remain elusive. Previously, we demonstrated that endolysosomal P2X4 forms channels activated by luminal adenosine triphosphate in a pH-dependent manner. In this paper, we show that overexpression of P2X4, as well as increasing endolysosomal P2X4 activity by alkalinization of endolysosome lumen, promoted vacuole enlargement in cells and endolysosome fusion in a cell-free assay. These effects were prevented by inhibiting P2X4, expressing a dominant-negative P2X4 mutant, and disrupting the P2X4 gene. We further show that P2X4 and calmodulin (CaM) form a complex at endolysosomal membrane where P2X4 activation recruits CaM to promote fusion and vacuolation in a Ca2+-dependent fashion. Moreover, P2X4 activation-triggered fusion and vacuolation were suppressed by inhibiting CaM. Our data thus suggest a new molecular mechanism for endolysosomal membrane fusion involving P2X4-mediated endolysosomal Ca2+ release and subsequent CaM activation.  相似文献   

13.
Ca2+ channels that underlie mitochondrial Ca2+ transport first reported decades ago have now just recently been precisely characterized electrophysiologically. Numerous data indicate that mitochondrial Ca2+ uptake via these channels regulates multiple intracellular processes by shaping cytosolic and mitochondrial Ca2+ transients, as well as altering the cellular metabolic and redox state. On the other hand, mitochondrial Ca2+ overload also initiates a cascade of events that leads to cell death. Thus, characterization of mitochondrial Ca2+ channels is central to a comprehensive understanding of cell signaling. Here, we discuss recent progresses in the biophysical and electrophysiological characterization of several distinct mitochondrial Ca2+ channels.  相似文献   

14.
Mitochondria are dynamic organelles that constantly undergo fission, fusion, and movement. Increasing evidence indicates that these dynamic changes are intricately related to mitochondrial function, suggesting that mitochondrial form and function are linked. Calcium (Ca2+) is one signal that has been shown to both regulate mitochondrial fission in various cell types and stimulate mitochondrial enzymes involved in ATP generation. However, although Ca2+ plays an important role in adult cardiac muscle cells for excitation–metabolism coupling, little is known about whether Ca2+ can regulate their mitochondrial morphology. Therefore, we tested the role of Ca2+ in regulating cardiac mitochondrial fission. We found that neonatal and adult cardiomyocyte mitochondria undergo rapid and transient fragmentation upon a thapsigargin (TG)- or KCl-induced cytosolic Ca2+ increase. The mitochondrial fission protein, DLP1, participates in this mitochondrial fragmentation, suggesting that cardiac mitochondrial fission machinery may be regulated by intracellular Ca2+ signaling. Moreover, the TG-induced fragmentation was also associated with an increase in reactive oxygen species (ROS) formation, suggesting that activation of mitochondrial fission machinery is an early event for Ca2+-mediated ROS generation in cardiac myocytes. These results suggest that Ca2+, an important regulator of muscle contraction and energy generation, also dynamically regulates mitochondrial morphology and ROS generation in cardiac myocytes.  相似文献   

15.
Small conductance calcium-activated potassium channels (SKs) are solely activated by intracellular Ca2+ and their activation leads to potassium efflux, thereby repolarizing/hyperpolarizing membrane potential. Thus, these channels play a critical role in synaptic transmission, and consequently in information transmission along the neuronal circuits expressing them. SKs are widely but not homogeneously distributed in the central nervous system (CNS). Activation of SKs requires submicromolar cytoplasmic Ca2+ concentrations, which are reached following either Ca2+ release from intracellular Ca2+ stores or influx through Ca2+ permeable membrane channels. Both Ca2+ sensitivity and synaptic levels of SKs are regulated by protein kinases and phosphatases, and degradation pathways. SKs in turn control the activity of multiple Ca2+ channels. They are therefore critically involved in coordinating diverse Ca2+ signaling pathways and controlling Ca2+ signal amplitude and duration. This review highlights recent advances in our understanding of the regulation of SK2 channels and of their roles in normal brain functions, including synaptic plasticity, learning and memory, and rhythmic activities. It will also discuss how alterations in their expression and regulation might contribute to various brain disorders such as Angelman Syndrome, Alzheimer's disease and Parkinson's disease.  相似文献   

16.
The intracellular calcium signaling processes are tightly regulated to ensure the generation of calcium signals with the specific spatiotemporal characteristics required for regulating various cell functions. Compartmentalization of the molecular components involved in the generation of these signals at discrete intracellular sites ensures the signaling specificity and transduction fidelity of the signal for regulating downstream effector processes. Store-operated calcium entry (SOCE) is ubiquitously present in cells and is critical for essential cell functions in a variety of tissues. SOCE is mediated via plasma membrane Ca2+ channels that are activated when luminal [Ca2+] of the endoplasmic reticulum ([Ca2+]ER) is decreased. The ER-resident stromal interaction molecules, STIM1 and STIM2, respond to decreases in [Ca2+]ER by undergoing conformational changes that cause them to aggregate at the cell periphery in ER-plasma membrane (ER-PM) junctions. At these sites, STIM proteins recruit Orai1 channels and trigger their activation. Importantly, the two STIM proteins concertedly modulate Orai1 function as well as the sensitivity of SOCE to ER-Ca2+ store depletion. Another family of plasma membrane Ca2+ channels, known as the Transient Receptor Potential Canonical (TRPC) channels (TRPC1-7) also contribute to sustained [Ca2+]i elevation. Although Ca2+ signals generated by these channels overlap with those of Orai1, they regulate distinct functions in the cells. Importantly, STIM1 is also required for plasma membrane localization and activation of some TRPCs. In this review, we will discuss various molecular components and factors that govern the activation, regulation and modulation of the Ca2+ signal generated by Ca2+ entry pathways in response to depletion of ER-Ca2+ stores. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.  相似文献   

17.
BK_(Ca)通道是细胞膜上受Ca~(2+)和膜电位双重调控的离子通道,其与细胞信号系统偶联并发挥着重要作用,该通道高度表达于高等动物的多种组织.最近的研究证实,在心肌细胞膜上存在力敏感BK通道并参与了心脏收缩与舒张的调控.本文将介绍BK通道与L-型钙通道功能上的耦合,心肌细胞质膜力敏感BK通道门控和功能的研究,以及对基底刚度的响应.这有助于更好地理解力敏感离子通道相关心脏疾病的病理和生理学基础.  相似文献   

18.
19.
Robert V  Triffaux E  Savignac M  Pelletier L 《Biochimie》2011,93(12):2087-2094
Calcium signalling is essential for most of the biological T-cell activities, including in Th2 lymphocytes, a T-cell subset that produce interleukin 4, 5 and 13 and which is involved in allergic diseases. T-cell receptor engagement induces the production of inositol trisphosphate that binds to its receptor, releasing intracellular Ca2+ stores. STIM in the endo (sarco) plasmic reticulum (ER/SR) is a Ca2+ sensor that perceives the depletion of intracellular Ca2+ stores, localizes near the cell membrane and allows the activation of ORAI, the main calcium channels at the cell membrane. However, other calcium channels at the membrane of intracellular compartments and at the cell membrane can also contribute to the TCR-driven intracellular Ca2+ rise. Among them, voltage-dependent calcium (Cav1) channels have been reported in several types of T-lymphocytes, although how they are gated in these non-excitable cells remains unsolved. We have shown that Cav1 channel expression was selectively up regulated in Th2 lymphocytes. In this review, we will discuss about the diversity of the Ca2+ channels responsible for Ca2+ homeostasis in the different cell subsets and the interactions between these molecules, which can account for the variety of the calcium responses depending upon the functions of effector T-cells.  相似文献   

20.
Ca2+ is an important signalling molecule that regulates multiple cellular processes, including apoptosis. Although Ca2+ influx through transient receptor potential (TRP) channels in the plasma membrane is known to trigger cell death, the function of intracellular TRP proteins in the regulation of Ca2+‐dependent signalling pathways and apoptosis has remained elusive. Here, we show that TRPP2, the ion channel mutated in autosomal dominant polycystic kidney disease (ADPKD), protects cells from apoptosis by lowering the Ca2+ concentration in the endoplasmic reticulum (ER). ER‐resident TRPP2 counteracts the activity of the sarcoendoplasmic Ca2+ ATPase by increasing the ER Ca2+ permeability. This results in diminished cytosolic and mitochondrial Ca2+ signals upon stimulation of inositol 1,4,5‐trisphosphate receptors and reduces Ca2+ release from the ER in response to apoptotic stimuli. Conversely, knockdown of TRPP2 in renal epithelial cells increases ER Ca2+ release and augments sensitivity to apoptosis. Our findings indicate an important function of ER‐resident TRPP2 in the modulation of intracellular Ca2+ signalling, and provide a molecular mechanism for the increased apoptosis rates in ADPKD upon loss of TRPP2 channel function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号