首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Yurkov AM  Kemler M  Begerow D 《PloS one》2011,6(8):e23671

Background

Yeast-like fungi inhabit soils throughout all climatic zones in a great abundance. While recent estimations predicted a plethora of prokaryotic taxa in one gram of soil, similar data are lacking for fungi, especially yeasts.

Methodology/Principal Findings

We assessed the diversity of soil yeasts in different forests of central Germany using cultivation-based techniques with subsequent identification based on rDNA sequence data. Based on experiments using various pre-cultivation sample treatment and different cultivation media we obtained the highest number of yeasts by analysing mixed soil samples with a single nutrient-rich medium. Additionally, several species richness estimators were applied to incidence-based data of 165 samples. All of them predicted a similar range of yeast diversity, namely 14 to 16 species. Randomized species richness curves reached saturation in all applied estimators, thus indicating that the majority of species is detected after approximately 30 to 50 samples analysed.

Conclusions/Significance

In this study we demonstrate that robust species identification as well as mathematical approaches are essential to reliably estimate the sampling effort needed to describe soil yeast communities. This approach has great potential for optimisation of cultivation techniques and allows high throughput analysis in the future.  相似文献   

2.

Background and Aims

Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a ‘microbial imprint hypothesis’ is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers.

Methods

Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods.

Key Results

Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence.

Conclusions

The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on pollination services in plant communities.  相似文献   

3.

Background

The molecular operational taxonomic unit (MOTU) has recently been applied to microbial and microscopic animal biodiversity surveys. However, in many cases, some of the MOTUs cannot be definitively tied to any of the taxonomic groups in current databases. To surmount these limitations, the concept of “reverse taxonomy” has been proposed, i.e. to primarily list the MOTUs with morphological information, and then identify and/or describe them at genus/species level using subsamples or by re-isolating the target organisms. Nevertheless, the application of “reverse taxonomy” has not been sufficiently evaluated. Therefore, the practical applicability of “reverse taxonomy” is tested using termite-associated nematodes as a model system for phoretic/parasitic organisms which have high habitat specificity and a potential handle (their termite host species) for re-isolation attempts.

Methodology

Forty-eight species (from 298 colonies) of termites collected from the American tropics and subtropics were examined for their nematode associates using the reverse taxonomy method and culturing attempts (morphological identification and further sequencing efforts). The survey yielded 51 sequence types ( =  MOTUs) belonging to 19 tentatively identified genera. Within these, four were identified based on molecular data with preliminary morphological observation, and an additional seven were identified or characterized from successful culturing, leaving eight genera unidentified.

Conclusions

That 1/3 of the genera were not successfully identified suggests deficiencies in the depth of available sequences in the database and biological characters, i.e. usually isolated as phoretic/parasitic stages which are not available for morphological identification, and too many undiscovered lineages of nematodes. Although there still is the issue of culturability of nematodes, culturing attempts could help to make reverse taxonomy methods more effective. However, expansion of the database, i.e., production of more DNA barcodes tied to biological information by finding and characterizing additional new and known lineages, is necessary for analyzing functional diversity.  相似文献   

4.

Background

Metagenomics has a great potential to discover previously unattainable information about microbial communities. An important prerequisite for such discoveries is to accurately estimate the composition of microbial communities. Most of prevalent homology-based approaches utilize solely the results of an alignment tool such as BLAST, limiting their estimation accuracy to high ranks of the taxonomy tree.

Results

We developed a new homology-based approach called Taxonomic Analysis by Elimination and Correction (TAEC), which utilizes the similarity in the genomic sequence in addition to the result of an alignment tool. The proposed method is comprehensively tested on various simulated benchmark datasets of diverse complexity of microbial structure. Compared with other available methods designed for estimating taxonomic composition at a relatively low taxonomic rank, TAEC demonstrates greater accuracy in quantification of genomes in a given microbial sample. We also applied TAEC on two real metagenomic datasets, oral cavity dataset and Crohn’s disease dataset. Our results, while agreeing with previous findings at higher ranks of the taxonomy tree, provide accurate estimation of taxonomic compositions at the species/strain level, narrowing down which species/strains need more attention in the study of oral cavity and the Crohn’s disease.

Conclusions

By taking account of the similarity in the genomic sequence TAEC outperforms other available tools in estimating taxonomic composition at a very low rank, especially when closely related species/strains exist in a metagenomic sample.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-242) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background and Aims

The sedge genus Carex, the most diversified angiosperm genus of the northern temperate zone, is renowned for its holocentric chromosomes and karyotype variability. The genus exhibits high variation in chromosome numbers both among and within species. Despite the possibility that this chromosome evolution may play a role in the high species diversity of Carex, population-level patterns of molecular and cytogenetic differentiation in the genus have not been extensively studied.

Methods

Microsatellite variation (11 loci, 461 individuals) and chromosomal diversity (82 individuals) were investigated in 22 Midwestern populations of the North American sedge Carex scoparia and two Northeastern populations.

Key Results

Among Midwestern populations, geographic distance is the most important predictor of genetic differentiation. Within populations, inbreeding is high and chromosome variation explains a significant component of genetic differentiation. Infrequent dispersal among populations separated by >100 km explains an important component of molecular genetic and cytogenetic diversity within populations. However, karyotype variation and correlation between genetic and chromosomal variation persist within populations even when putative migrants based on genetic data are excluded.

Conclusions

These findings demonstrate dispersal and genetic connectivity among widespread populations that differ in chromosome numbers, explaining the phenomenon of genetic coherence in this karyotypically diverse sedge species. More generally, the study suggests that traditional sedge taxonomic boundaries demarcate good species even when those species encompass a high range of chromosomal diversity. This finding is important evidence as we work to document the limits and drivers of biodiversity in one of the world''s largest angiosperm genera.  相似文献   

6.

Background

Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments.

Methodology/Principal Findings

In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species.

Conclusions/Significance

COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of natural diversity in dinoflagellates. This highlights the extent to which we underestimate microbial diversity in the environment.  相似文献   

7.

Background

Trigonopterus weevils are widely distributed throughout Melanesia and hyperdiverse in New Guinea. They are a dominant feature in natural forests, with narrow altitudinal zonation. Their use in community ecology has been precluded by the “taxonomic impediment”.

Methodology/Principal Findings

We sampled >6,500 specimens from seven areas across New Guinea; 1,002 specimens assigned to 270 morphospecies were DNA sequenced. Objective clustering of a refined dataset (excluding nine cryptic species) at 3% threshold revealed 324 genetic clusters (DNA group count relative to number of morphospecies = 20.0% overestimation of species diversity, or 120.0% agreement) and 85.6% taxonomic accuracy (the proportion of DNA groups that “perfectly” agree with morphology-based species hypotheses). Agreement and accuracy were best at an 8% threshold. GMYC analysis revealed 328 entities (21.5% overestimation) with 227 perfect GMYC entities (84.1% taxonomic accuracy). Both methods outperform the parataxonomist (19% underestimation; 31.6% taxonomic accuracy). The number of species found in more than one sampling area was highest in the Eastern Highlands and Huon (Sørensen similarity index 0.07, 4 shared species); ⅓ of all areas had no species overlap. Success rates of DNA barcoding methods were lowest when species showed a pronounced geographical structure. In general, Trigonopterus show high α and β-diversity across New Guinea.

Conclusions/Significance

DNA barcoding is an excellent tool for biodiversity surveys but success rates might drop when closer localities are included. Hyperdiverse Trigonopterus are a useful taxon for evaluating forest remnants in Melanesia, allowing finer-grained analyses than would be possible with vertebrate taxa commonly used to date. Our protocol should help establish other groups of hyperdiverse fauna as target taxa for community ecology. Sequencing delivers objective data on taxa of incredible diversity but mostly without a solid taxonomic foundation and should help pave the road for the eventual formal naming of new species.  相似文献   

8.

Background

Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan.

Methods/Principal Findings

Sequence diversity in the DNA barcode region (mtCOI-5′) was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3′ to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage “Pakistan”. The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and “Pakistan” were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan.

Conclusions

DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region.  相似文献   

9.

Background

Although not unusual to find captive relicts of species lost in the wild, rarely are presumed extinct species rediscovered outside of their native range. A recent study detected living descendents of an extinct Galápagos tortoise species (Chelonoidis elephantopus) once endemic to Floreana Island on the neighboring island of Isabela. This finding adds to the growing cryptic diversity detected among these species in the wild. There also exists a large number of Galápagos tortoises in captivity of ambiguous origin. The recently accumulated population-level haplotypic and genotypic data now available for C. elephantopus add a critical reference population to the existing database of 11 extant species for investigating the origin of captive individuals of unknown ancestry.

Methodology/Findings

We reanalyzed mitochondrial DNA control region haplotypes and microsatellite genotypes of 156 captive individuals using an expanded reference database that included all extant Galápagos tortoise species as well as the extinct species from Floreana. Nine individuals (six females and three males) exhibited strong signatures of Floreana ancestry and a high probability of assignment to C. elephantopus as detected by Bayesian assignment and clustering analyses of empirical and simulated data. One male with high assignment probability to C. elephantopus based on microsatellite genotypic data also possessed a “Floreana-like” mitochondrial DNA haplotype.

Significance

Historical DNA analysis of museum specimens has provided critical spatial and temporal components to ecological, evolutionary, taxonomic and conservation-related research, but rarely has it informed ex situ species recovery efforts. Here, the availability of population-level genotypic data from the extinct C. elephantopus enabled the identification of nine Galápagos tortoise individuals of substantial conservation value that were previously misassigned to extant species of varying conservation status. As all captive individuals of C. elephantopus ancestry currently reside at a centralized breeding facility on Santa Cruz, these findings permit breeding efforts to commence in support of the reestablishment of this extinct species to its native range.  相似文献   

10.

Background

Trade in ornamental fishes represents, by far, the largest route for the importation of exotic vertebrates. There is growing pressure to regulate this trade with the goal of ensuring that species are sustainably harvested and that their point of origin is accurately reported. One important element of such regulation involves easy access to specimen identifications, a task that is currently difficult for all but specialists because of the large number of species involved. The present study represents an important first step in making identifications more accessible by assembling a DNA barcode reference sequence library for nearly half of the ornamental fish species imported into North America.

Methodology/Principal Findings

Analysis of the cytochrome c oxidase subunit I (COI) gene from 391 species from 8 coral reef locations revealed that 98% of these species exhibit distinct barcode clusters, allowing their unambiguous identification. Most species showed little intra-specific variation (adjusted mean = 0.21%), but nine species included two or three lineages showing much more divergence (2.19–6.52%) and likely represent overlooked species complexes. By contrast, three genera contained a species pair or triad that lacked barcode divergence, cases that may reflect hybridization, young taxa or taxonomic over-splitting.

Conclusions/Significance

Although incomplete, this barcode library already provides a new species identification tool for the ornamental fish industry, opening a realm of applications linked to collection practices, regulatory control and conservation.  相似文献   

11.

Background

Species diversity is proposed to greatly impact the prevalence of pathogens. Two predominant hypotheses, the “Dilution Effect” and the “Amplification Effect”, predict divergent outcomes with respect to the impact of species diversity. The Dilution Effect predicts that pathogen prevalence will be negatively correlated with increased species diversity, while the Amplification Effect predicts that pathogen prevalence will be positively correlated with diversity. For many host-pathogen systems, the relationship between diversity and pathogen prevalence has not be empirically examined.

Methodology/Principal Findings

We tested the Dilution and Amplification Effect hypotheses by examining the prevalence of Sin Nombre virus (SNV) with respect to diversity of the nocturnal rodent community. SNV is directly transmitted primarily between deer mice (Peromyscus maniculatus). Using mark-recapture sampling in the Spring and Fall of 2003–2005, we measured SNV prevalence in deer mice at 16 landscape level sites (3.1 hectares each) that varied in rodent species diversity. We explored several mechanisms by which species diversity may affect SNV prevalence, including reduced host density, reduced host persistence, the presence of secondary reservoirs and community composition. We found a negative relationship between species diversity and SNV prevalence in deer mice, thereby supporting the Dilution Effect hypothesis. Deer mouse density and persistence were lower at sites with greater species diversity; however, only deer mouse persistence was positively correlated with SNV prevalence. Pinyon mice (P. truei) may serve as dilution agents, having a negative effect on prevalence, while kangaroo rats (Dipodomys ordii), may have a positive effect on the prevalence of SNV, perhaps through effects on deer mouse behavior.

Conclusions/Significance

While previous studies on host-pathogen systems have found patterns of diversity consistent with either the Dilution or Amplification Effects, the mechanisms by which species diversity influences prevalence have not been investigated. Our study indicates that changes in host persistence, coupled with interspecific interactions, are important mechanisms through which diversity may influence patterns of pathogens. Our results reveal the complexity of rodent community interactions with respect to SNV dynamics.  相似文献   

12.
Hendrich L  Pons J  Ribera I  Balke M 《PloS one》2010,5(12):e14448

Background

The demand for scientific biodiversity data is increasing, but taxonomic expertise is often limited or not available. DNA sequencing is a potential remedy to overcome this taxonomic impediment. Mitochondrial DNA is most commonly used, e.g., for species identification (“DNA barcoding”). Here, we present the first study in arthropods based on a near-complete species sampling of a family-level taxon from the entire Australian region. We aimed to assess how reliably mtDNA data can capture species diversity when many sister species pairs are included. Then, we contrasted phylogenetic subsampling with the hitherto more commonly applied geographical subsampling, where sister species are not necessarily captured.

Methodology/Principal Findings

We sequenced 800 bp cox1 for 1,439 individuals including 260 Australian species (78% species coverage). We used clustering with thresholds of 1 to 10% and general mixed Yule Coalescent (GMYC) analysis for the estimation of species richness. The performance metrics used were taxonomic accuracy and agreement between the morphological and molecular species richness estimation. Clustering (at the 3% level) and GMYC reliably estimated species diversity for single or multiple geographic regions, with an error for larger clades of lower than 10%, thus outperforming parataxonomy. However, the rates of error were higher for some individual genera, with values of up to 45% when very recent species formed nonmonophyletic clusters. Taxonomic accuracy was always lower, with error rates above 20% and a larger variation at the genus level (0 to 70%). Sørensen similarity indices calculated for morphospecies, 3% clusters and GMYC entities for different pairs of localities was consistent among methods and showed expected decrease over distance.

Conclusion/Significance

Cox1 sequence data are a powerful tool for large-scale species richness estimation, with a great potential for use in ecology and β-diversity studies and for setting conservation priorities. However, error rates can be high in individual lineages.  相似文献   

13.

Background

Iris L. s.l. is one of the most diverse and well-known genera in the Asparagales, with approximately 250–300 circumscribed species and significant economic impact. The taxonomy of the genus has suffered dramatic changes in the last century, particularly in the last decades after the application of molecular techniques. As a result several contrasting systematic arrangements are currently available to taxonomists. Many genera that were split from Iris s.str. in the past, on the basis of morphology (e.g., Hermodactylus, Iridodictyum, Juno, Pardanthopsis, and Xiphion, among others), are now a priori re-included in a very widely circumscribed Iris s.l. (incl. Belamcanda). This resulted in a more heterogeneous genus that is more difficult to define on morphological grounds. Testing congruence between taxonomic treatments and the results of recent molecular studies of Iris has never been performed, mostly due to the lack of proper taxonomic context.

Results

We generated several conventional phylogenies for Iris & outgroups using extensive sampling of taxa (187) and characters (10 plastid loci). We demonstrate that the natural history of Iris, written either as conventional molecular phylogenies or, if viewing in the context of the comparative approach, as a nested most parsimonious hierarchy of patterns, appear to be fully congruent with the narrow taxonomical treatment of the genus, restricted to the rhizomatous “bearded” taxa. The resulting topologies place Belamcanda, Pardanthopsis, and Gattenhofia as sisters to Iris s.str. and genus Siphonostylis as sister to Iris s.l.

Conclusion

The present study clearly justifies the splitting of Iris s.l. into at least 23 genera, 18 of which have already been accepted in the past by numerous authorities. These genera are characterized by unique combinations of partly overlapping morphological characters and biogeography. Moreover, nearly the same entities, which we here recognize at a generic rank, were for centuries frequently referred to by horticulturists as “working-name” groups.  相似文献   

14.

Background

A rapid worldwide increase in the number of human infections caused by the extremely antibiotic resistant bacterium Stenotrophomonas maltophilia is prompting alarm. One potential treatment solution to the current antibiotic resistance dilemma is “phage therapy”, the clinical application of bacteriophages to selectively kill bacteria.

Results

Towards that end, phages DLP1 and DLP2 (vB_SmaS-DLP_1 and vB_SmaS-DLP_2, respectively) were isolated against S. maltophilia strain D1585. Host range analysis for each phage was conducted using 27 clinical S. maltophilia isolates and 11 Pseudomonas aeruginosa strains. Both phages exhibit unusually broad host ranges capable of infecting bacteria across taxonomic orders. Transmission electron microscopy of the phage DLP1 and DLP2 morphology reveals that they belong to the Siphoviridae family of bacteriophages. Restriction fragment length polymorphism analysis and complete genome sequencing and analysis indicates that phages DLP1 and DLP2 are closely related but different phages, sharing 96.7 % identity over 97.2 % of their genomes. These two phages are also related to P. aeruginosa phages vB_Pae-Kakheti_25 (PA25), PA73, and vB_PaeS_SCH_Ab26 (Ab26) and more distantly related to Burkholderia cepacia complex phage KL1, which together make up a taxonomic sub-family. Phages DLP1 and DLP2 exhibited significant differences in host ranges and growth kinetics.

Conclusions

The isolation and characterization of phages able to infect two completely different species of bacteria is an exciting discovery, as phages typically can only infect related bacterial species, and rarely infect bacteria across taxonomic families, let alone across taxonomic orders.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1848-y) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Networks of single interaction types, such as plant-pollinator mutualisms, are biodiversity’s “building blocks”. Yet, the structure of mutualistic and antagonistic networks differs, leaving no unified modeling framework across biodiversity’s component pieces.

Methods/Principal Findings

We use a one-dimensional “niche model” to predict antagonistic and mutualistic species interactions, finding that accuracy decreases with the size of the network. We show that properties of the modeled network structure closely approximate empirical properties even where individual interactions are poorly predicted. Further, some aspects of the structure of the niche space were consistently different between network classes.

Conclusions/Significance

These novel results reveal fundamental differences between the ability to predict ecologically important features of the overall structure of a network and the ability to predict pair-wise species interactions.  相似文献   

16.

Background

Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world.

Methodology/Principal Findings

We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content.

Conclusions/Significance

Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed.  相似文献   

17.

Main Objective

We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae).

Methods

We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries.

Results

Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758), a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90%) Australian sphingids are endemic to the continent (45%) or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%). Only seven species (10%) have ranges that extend beyond this major biogeographical boundary toward SE Asia and other regions of the Old World.

Main Conclusions

This study has established that overlooked cryptic diversity and inaccurate species delineation produced significant misconceptions concerning diversity and distribution patterns in a group of insects that is considered well known taxonomically. Because DNA barcoding represents a straightforward way to test taxonomic boundaries, its implementation can improve the accuracy of primary diversity data in biogeography and conservation studies.  相似文献   

18.

Background

The King Island Emu (Dromaius ater) of Australia is one of several extinct emu taxa whose taxonomic relationship to the modern Emu (D. novaehollandiae) is unclear. King Island Emu were mainly distinguished by their much smaller size and a reported darker colour compared to modern Emu.

Methodology and Results

We investigated the evolutionary relationships between the King Island and modern Emu by the recovery of both nuclear and mitochondrial DNA sequences from sub-fossil remains. The complete mitochondrial control (1,094 bp) and cytochrome c oxidase subunit I (COI) region (1,544 bp), as well as a region of the melanocortin 1 receptor gene (57 bp) were sequenced using a multiplex PCR approach. The results show that haplotypes for King Island Emu fall within the diversity of modern Emu.

Conclusions

These data show the close relationship of these emu when compared to other congeneric bird species and indicate that the King Island and modern Emu share a recent common ancestor. King Island emu possibly underwent insular dwarfism as a result of phenotypic plasticity. The close relationship between the King Island and the modern Emu suggests it is most appropriate that the former should be considered a subspecies of the latter. Although both taxa show a close genetic relationship they differ drastically in size. This study also suggests that rates of morphological and neutral molecular evolution are decoupled.  相似文献   

19.

Background

Replication-independent endogenous double-strand breaks (RIND-EDSBs) occur in both humans and yeast in the absence of inductive agents and DNA replication. In human cells, RIND-EDSBs are hypermethylated, preferentially retained in the heterochromatin and unbound by γ-H2AX. In single gene deletion yeast strains, the RIND-EDSB levels are altered; the number of RIND-EDSBs is higher in strains with deletions of histone deacetylase, endonucleases, topoisomerase, or DNA repair regulators, but lower in strains with deletions of the high-mobility group box proteins or Sir2. In summary, RIND-EDSBs are different from pathologic DSBs in terms of their causes and consequences. In this study, we identified the nucleotide sequences surrounding RIND-EDSBs and investigated the features of these sequences as well as their break locations.

Results

In recent work, we detected RIND-EDSBs using ligation mediated PCR. In this study, we sequenced RIND-EDSB PCR products of resting state Saccharomyces cerevisiae using next-generation sequencing to analyze RIND-EDSB sequences. We found that the break locations are scattered across a number of chromosomes. The number of breaks correlated with the size of the chromosomes. Most importantly, the break occurrences had sequence pattern specificity. Specifically, the majority of the breaks occurred immediately after the sequence “ACGT” (P = 2.2E-156). Because the “ACGT” sequence does not occur primarily in the yeast genome, this specificity of the “ACGT” sequence cannot be attributed to chance.

Conclusions

RIND-EDSBs occur non-randomly; that is, they are produced and retained by specific mechanisms. Because these particular mechanisms regulate their generation and they possess potentially specific functions, RIND-EDSBs could be epigenetic marks.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-750) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

The construction of comprehensive reference libraries is essential to foster the development of DNA barcoding as a tool for monitoring biodiversity and detecting invasive species. The looper moths of British Columbia (BC), Canada present a challenging case for species discrimination via DNA barcoding due to their considerable diversity and limited taxonomic maturity.

Methodology/Principal Findings

By analyzing specimens held in national and regional natural history collections, we assemble barcode records from representatives of 400 species from BC and surrounding provinces, territories and states. Sequence variation in the barcode region unambiguously discriminates over 93% of these 400 geometrid species. However, a final estimate of resolution success awaits detailed taxonomic analysis of 48 species where patterns of barcode variation suggest cases of cryptic species, unrecognized synonymy as well as young species.

Conclusions/Significance

A catalog of these taxa meriting further taxonomic investigation is presented as well as the supplemental information needed to facilitate these investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号