首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because physical form and function are intimately linked, mechanisms that maintain cell shape and size within strict limits are likely to be important for a wide variety of biological processes. However, while intrinsic controls have been found to contribute to the relatively well-defined shape of bacteria and yeast cells, the extent to which individual cells from a multicellular animal control their plastic form remains unclear. Here, using micropatterned lines to limit cell extension to one dimension, we show that cells spread to a characteristic steady-state length that is independent of cell size, pattern width, and cortical actin. Instead, homeostatic length control on lines depends on a population of dynamic microtubules that lead during cell extension, and that are aligned along the long cell axis as the result of interactions of microtubule plus ends with the lateral cell cortex. Similarly, during the development of the zebrafish neural tube, elongated neuroepithelial cells maintain a relatively well-defined length that is independent of cell size but dependent upon oriented microtubules. A simple, quantitative model of cellular extension driven by microtubules recapitulates cell elongation on lines, the steady-state distribution of microtubules, and cell length homeostasis, and predicts the effects of microtubule inhibitors on cell length. Together this experimental and theoretical analysis suggests that microtubule dynamics impose unexpected limits on cell geometry that enable cells to regulate their length. Since cells are the building blocks and architects of tissue morphogenesis, such intrinsically defined limits may be important for development and homeostasis in multicellular organisms.  相似文献   

2.
The length dynamics both of microtubule-associated protein (MAP)-rich and MAP-depleted bovine brain microtubules were examined at polymer mass steady state. In both preparations, the microtubules exhibited length redistributions shortly after polymer mass steady state was attained. With time, however, both populations relaxed to a state in which no further changes in length distributions could be detected. Shearing the microtubules or diluting the microtubule suspensions transiently increased the extent to which microtubule length redistributions occurred, but again the microtubules relaxed to a state in which changes in the polymer length distributions were not detected. Under steady-state conditions of constant polymer mass and stable microtubule length distribution, both MAP-rich and MAP-depleted microtubules exhibited behavior consistent with treadmilling. MAPs strongly suppressed the magnitude of length redistributions and the steady-state treadmilling rates. These data indicate that the inherent tendency of microtubules in vitro is to relax to a steady state in which net changes in the microtubule length distributions are zero. If the basis of the observed length redistributions is the spontaneous loss and regain of GTP-tubulin ("GTP caps") at microtubule ends, then in order to account for stable length distributions the microtubule ends must reside in the capped state far longer than in the uncapped state, and uncapped microtubule ends must be rapidly recapped. The data suggest that microtubules in cells may have an inherent tendency to remain in the polymerized state, and that microtubule disassembly must be induced actively.  相似文献   

3.
In eukaryotic cells, the onset of mitosis involves cyclin molecules which interact with proteins of the cdc2 family to produce active kinases. In vertebrate cells, cyclin A dependent kinases become active in S- and pro-phases, whereas a cyclin B-dependent kinase is mostly active in metaphase. It has recently been shown that, when added to Xenopus egg extracts, bacterially produced A- and B-type cyclins associate predominantly with the same kinase catalytic subunit, namely p34cdc2, and induce its histone H1 kinase activity with different kinetics. Here, we show that in the same cell free system, both the addition of cyclin A and cyclin B changes microtubule behavior. However, the cyclin A-dependent kinase does not induce a dramatic shortening of centrosome-nucleated microtubules whereas the cyclin B-dependent kinase does, as previously reported. Analysis of the parameters of microtubule dynamics by fluorescence video microscopy shows that the dramatic shortening induced by the cyclin B-dependent kinase is correlated with a several fold increase in catastrophe frequency, an effect not observed with the cyclin A-dependent kinase. Using a simple mathematical model, we show how the length distributions of centrosome-nucleated microtubules relate to the four parameters that describe microtubule dynamics. These four parameters define a threshold between unlimited microtubule growth and the establishment of steady-state dynamics, which implies that well defined steady-state length distributions can be produced by regulating precisely the respective values of the dynamical parameters. Moreover, the dynamical model predicts that increasing catastrophe frequency is more efficient than decreasing the rescue frequency to reduce the average steady state length of microtubules. These theoretical results are quantitatively confirmed by the experimental data.  相似文献   

4.
Spindle positioning in animal cells is thought to rely upon the interaction of astral microtubules with the cell cortex. Information on the dynamics of astral microtubules during this process is scarce, in part because of the difficulty in visualising these microtubules by light microscopy. EB1 is a protein which specifically localises to growing microtubule distal tips. Immunostaining for EB1 therefore represents a powerful method for visualising the distribution of growing microtubule tips within cells. In this study we used EB1 immunostaining in mitotic NRK-52E cells to quantitatively analyse the length and number of growing astral microtubules during metaphase and anaphase. We observed a dramatic increase in growing astral microtubule length and number during anaphase. Furthermore, drug treatments which specifically destroyed astral microtubules resulted in an increase in misaligned anaphase but not metaphase spindles. We suggest that an anaphase-specific increase in growing astral microtubule length and number facilitates the maintenance of a correctly aligned spindle in mitotic NRK-52E cells.  相似文献   

5.
The variety of shapes and sizes of the microtubule cytoskeleton is as great as the number of different cell types. This large variety is a consequence of the dynamic properties of microtubules, which allow them to adopt distributions of arbitrary size and form. How is the distribution of microtubule lengths controlled? Recent work suggests that the length distribution is controlled, at least in part, by the activity of microtubule polymerases and depolymerases, which accelerate microtubule growth and shrinkage. Specifically, biochemical and single-molecule studies have shown how MCAK (kinesin-13) and Kip3p (kinesin-8) accelerate depolymerization and how XMAP215 may accelerate growth. Studies on the yeast Dam1 complex have shown how proteins can couple a cellular structure, the kinetochore, to the ends of polymerizing and depolymerizing microtubules.  相似文献   

6.
Recent experiments have demonstrated that the behavior of the interphase microtubule array is cell-type specific: microtubules in epithelial cells are less dynamic than microtubules in fibroblasts (Pepper-kok et al., 1990; Wadsworth and McGrail, 1990). To determine which parameters of microtubule dynamic instability behavior are responsible for this difference, we have examined the behavior of individual microtubules in both cell types after injection with rhodamine-labeled tubulin subunits. Individual microtubules in both cell types were observed to grow, shorten, and pause, as expected. The average amount of time microtubules remained within the lamellae of CHO fibroblasts, measured from images acquired at 10-s intervals, was significantly shorter than the average amount of time microtubules remained within lamellae of PtK1 epithelial cells. Further analysis of individual microtubule behavior from images acquired at 2-s intervals reveals that microtubules in PtK1 cells undergo multiple brief episodes of growth and shortening, resulting in little overall change in the microtubule network. In contrast, microtubules in lamellae of CHO fibroblasts are observed to undergo fewer transitions which are of longer average duration, resulting in substantial changes in the microtubule network over time. A small subset of more stable microtubules was also detected in CHO fibroblasts. Quantification of the various parameters of dynamic instability behavior from these sequences demonstrates that the average rates of both growth and shortening are significantly greater for the majority of microtubules in fibroblasts than for microtubules in epithelial cells (19.8 +/- 10.8 microns/min, 32.2 +/- 17.7 microns/min, 11.9 +/- 6.5 microns/min, and 19.7 +/- 8.1 microns/min, respectively). The frequency of catastrophe events (1/interval between catastrophe events) was similar in both cell types, but the frequency of rescue events (1/time spent shrinking) was significantly higher in PtK1 cells. Thus, individual microtubules in PtK1 lamellae undergo frequent excursions of short duration and extent, whereas most microtubules in CHO lamellae undergo more extensive excursions often resulting in the appearance or disappearance of microtubules within the field of view. These observations provide the first direct demonstration of cell-type specific behavior of individual microtubules in living cells, and indicate that these differences can be brought about by modulation of the frequency of rescue. These results directly support the view that microtubule dynamic instability behavior is regulated in a cell-type specific manner.  相似文献   

7.
We extracted chromosomes by micromanipulation from Melanoplus differentialis spermatocytes, producing metaphase spindles with only one or a few chromosomes instead of the usual complement of 23. Cells with various numbers of chromosomes were prepared for electron microscopy, and spindle microtubule length was measured. A constant increment of microtubule length was lost upon the removal of each chromosome; we estimate that only approximately 40% of the original length would remain in the total absence of chromosomes. Unexpectedly, kinetochore microtubules were not the only ones affected when chromosomes were removed: nonkinetochore microtubules accounted for a substantial fraction of the total length lost. No compensatory increase in microtubule length outside the spindle was found. Studies by others show that the kinetochore microtubules of extracted chromosomes are left behind in the cell and dissassemble. The resulting increase in subunit concentration would be expected from in vitro studies to drive microtubule assembly until the original total microtubule length was restored, but that did not happen in these living cells. We conclude that the assembly of a certain, large fraction of microtubule subunits into stable microtubules is dependent on the presence of chromosomes. Possible explanations include (a) limits on microtubule length that prevent any net assembly of the subunits released after chromosomes are removed or (b) a promotion of microtubule assembly by chromosomes, which therefore is reduced in their absence. Chromosome-dependent regulation of microtubule length may account for some features of normal mitosis.  相似文献   

8.
Microtubules are protein polymers that guide intracellular motility. Stochastic switching of a microtubule between states of elongation, shortening, and pause is described in detail by the dynamic instability (DI) model. Recently we have described the dynamics of microtubules phenomenologically as generalized diffusion of their ends. Genesis of the diffusion dynamics and accuracy of diffusion model are studied in this work. It is shown that wandering of the end of a microtubule undergoing DI asymptotically approaches the Wiener diffusion process. Accuracy of the diffusion approximation is evaluated by comparing its predictions with results of simulation of DI. Stationary distributions of microtubule length and lifetime that are predicted by both models differ qualitatively between two cell types considered. However, predictions of the diffusion model are in each case practically identical to predictions of the DI model being also consistent with experimental data. The peculiar stochastic process of microtubule assembly thus converges at cell scale to a kind of widespread-in-nature diffusion process. This result is considered an example of qualitative change in dynamical properties in transition from the molecular to cellular level of biological organization. Additionally, it suggests employment of diffusion process theory in studying functions of microtubules in the cell.  相似文献   

9.
It is generally assumed that microtubules in tissue culture cells extend from the centrosome to cell periphery, and the length of individual microtubules averages several dozens of microns. However, direct electron-microscopic measurements have cast some doubt on this assumption. In this study, the average length of microtubules in cultured Vero cells was estimated using a combined approach. The length of free cytoplasmic and centrosomal microtubules was determined by means of electron microscopy in serial sections; concurrently, the length of free microtubules in the lamella was measured in preparations stained with tubulin antibodies (an indirect immunofluorescent method), by tracing saltatory particle movements along the microtubules in living cells. According to the data of immunofluorescent microscopy, microtubule length in the lamella averaged 4.57 +/- 3.69 microns. However, since two or more microtubules can overlap, their length may be slightly overestimated by this method. On the other hand, saltatory movements are easy to monitor and measure fairly accurately, but their range may be shorter than the actual microtubule length because of a limited processiveness of motors (kinesin and dynein). On average, the trajectories of saltatory movements in living cells were 3.85 +/- 0.72 microns long. At the electron-microscopic level, microtubule length was analyzed using pseudo-three-dimensional reconstructions of the microtubule systems around the centrosome and in the lamella. The length of free microtubules in the lamella reached 18 microns, averaging 3.33 +/- 2.43 microns; the average length of centrosomal microtubules was 1.49 +/- 0.82 microns. Good correspondence between the data on microtubule length and arrangement obtained by different methods allows the conclusion that most of free microtubules in Vero cells actually have a length of 2-5 microns; i.e., they are much shorter than the cell radius (about 25 microns). Microtubules extending from the centrosome are shorter still and do not reach the cell periphery. Thus, most microtubules in the lamella of Vero cells are free and their ordered arrangement is not associated with their attachment to the centrosome.  相似文献   

10.
The mitotic spindle plays an essential role in chromosome segregation during cell division. Spindle formation and proper function require that microtubules with opposite polarity overlap and interact. Previous computational simulations have demonstrated that these antiparallel interactions could be created by complexes combining plus- and minus-end-directed motors. The resulting spindles, however, exhibit sparse antiparallel microtubule overlap with motor complexes linking only a nominal number of antiparallel microtubules. Here we investigate the role that spatial differences in the regulation of microtubule interactions can have on spindle morphology. We show that the spatial regulation of microtubule catastrophe parameters can lead to significantly better spindle morphology and spindles with greater antiparallel MT overlap. We also demonstrate that antiparallel microtubule overlap can be increased by having new microtubules nucleated along the length of existing astral microtubules, but this increase negatively affects spindle morphology. Finally, we show that limiting the diffusion of motor complexes within the spindle region increases antiparallel microtubule interaction.  相似文献   

11.
Deuterium oxide (D(2)O) is known to promote the assembly of tubulin into microtubules in vitro, to increase the volume of mitotic spindles and the number and length of spindle microtubules, and to inhibit mitosis. Reasoning that its actions on cellular microtubules could be due to modulation of microtubule dynamics, we examined the effects of replacing H(2)O with D(2)O on microtubule dynamic instability, treadmilling, and steady-state GTPase activity. We found that replacing 50% or more of the H(2)O with D(2)O promoted microtubule polymerization and stabilized microtubules against dilution-induced disassembly. Using steady-state axoneme-seeded microtubules composed of pure tubulin and video microscopy, we found that 84% D(2)O decreased the catastrophe frequency by 89%, the shortening rate by 80%, the growing rate by 50%, and the dynamicity by 93%. Sixty percent D(2)O decreased the treadmilling rate of microtubules composed of tubulin and microtubule-associated proteins by 42%, and 89% D(2)O decreased the steady-state GTP hydrolysis rate by 90%. The mechanism responsible for the ability of D(2)O to stabilize microtubule dynamics may involve enhancement of hydrophobic interactions in the microtubule lattice and/or the substitution of deuterium bonds for hydrogen bonds.  相似文献   

12.
The dynamic and mechanical properties of mammalian neural microtubules have been widely studied; however, similar knowledge about these properties is limited for non-neural microtubules, which, unlike neural microtubules, consist of different β-tubulin isotypes. In this study, we report, for the first time, an estimated value for the persistence length of a single non-neural microtubule polymerized from purified tubulin from human breast cancer cell lines (MCF7 tubulin). The method of measurement is based on an analysis of the local curvature of a microtubule as a result of thermal fluctuations. In parallel, we measured the persistence length of a single bovine brain microtubule under similar conditions. The results of our measurements indicate a higher value for the persistence length of MCF7 microtubules in vitro as compared to the persistence length of a neural microtubule. The difference can be associated with different β-tubulin isotypes in the structure of MCF7 microtubules.  相似文献   

13.
We have compared the nature of interaction of certain taxanes with microtubular protein, and the mechanism of action underlying cytotoxic activity. Taxanes induced tubulin assembly in vitro, but only taxanes bearing side chain were capable of inducing the formation of stable tubulin polymers. Electron microscopy detections showed that taxane-induced polymers are structurally similar to microtubules formed by paclitaxel, with differences in length. Otherwise, light microscopy views have shown that intracellular microtubule network is deeply reorganized by taxanes into short fibers, unlike paclitaxel-bundled microtubules. Taxanes inhibited the growth of various human tumor cell lines, but cell cycle analysis did not always indicate a block in the G2/M phase. These agents alter some apoptotic signal transduction pathways, probably by a mechanism distinct from microtubule interaction. Briefly, the effectiveness of taxanes is closely related to their chemical structure, and depends on their interaction with microtubular protein. By virtue of this mechanism, some of these taxanes may provide usefulness for therapeutic improvements.  相似文献   

14.
Microtubules play an important role in many cellular processes, including mitotic spindle formation and cell division. Taxane-based anticancer treatments lead to the stabilization of microtubules, thus preventing the uncontrolled proliferation of tumor cells. One of the striking physical features of taxane-treated cells is the localization of their microtubules, which can be observed via fluorescent microscopy as an intense fluorescent band and are referred to as a microtubule bundle. With the recent advances in capturing and analyzing tumor cells circulating in a patient’s blood system, there is increasing interest in using these cells to examine a patient’s response to treatment. This includes taxanes that are used routinely in clinics to treat prostate, breast, lung, and other cancers. Here, we have used a computational model of microtubule mechanics to investigate self-arrangement patterns of stabilized microtubules, which allowed for the identification of specific combinations of three physical parameters: microtubule stiffness, intracellular viscosity, and cell shape, that can prevent the formation of microtubule bundles in cells with stabilized microtubules, such as taxane-treated cells. We also developed a method to quantify bundling in the whole microtubule aster structure and a way to compare the simulated results to fluorescent images from experimental data. Moreover, we investigated microtubule rearrangement in both suspended and attached cells and showed that the observed final microtubule patterns depend on the experimental protocol. The results from our computational studies can explain the heterogeneous bundling phenomena observed via fluorescent immunostaining from a mechanical point of view without relying on heterogeneous cellular responses to the microtubule-stabilizing drug.  相似文献   

15.
Microtubules play an important role in many cellular processes, including mitotic spindle formation and cell division. Taxane-based anticancer treatments lead to the stabilization of microtubules, thus preventing the uncontrolled proliferation of tumor cells. One of the striking physical features of taxane-treated cells is the localization of their microtubules, which can be observed via fluorescent microscopy as an intense fluorescent band and are referred to as a microtubule bundle. With the recent advances in capturing and analyzing tumor cells circulating in a patient’s blood system, there is increasing interest in using these cells to examine a patient’s response to treatment. This includes taxanes that are used routinely in clinics to treat prostate, breast, lung, and other cancers. Here, we have used a computational model of microtubule mechanics to investigate self-arrangement patterns of stabilized microtubules, which allowed for the identification of specific combinations of three physical parameters: microtubule stiffness, intracellular viscosity, and cell shape, that can prevent the formation of microtubule bundles in cells with stabilized microtubules, such as taxane-treated cells. We also developed a method to quantify bundling in the whole microtubule aster structure and a way to compare the simulated results to fluorescent images from experimental data. Moreover, we investigated microtubule rearrangement in both suspended and attached cells and showed that the observed final microtubule patterns depend on the experimental protocol. The results from our computational studies can explain the heterogeneous bundling phenomena observed via fluorescent immunostaining from a mechanical point of view without relying on heterogeneous cellular responses to the microtubule-stabilizing drug.  相似文献   

16.
Multiple sites for the initiation of microtubule assembly in mammalian cells.   总被引:18,自引:0,他引:18  
The pattern of microtubule regrowth in mammalian fibroblast and epithelial cells has been examined by immunofluorescence of cytoskeletal preparations with antibody to tubulin. After reversal of treatment with colcemid, vinblastine or low temperature, microtubules appear to grow simultaneously from several distinct initiation sites located within 5 microns of the nucleus of mouse and human fibroblasts. Each site initiates the growth of 10-30 microtubules. More than 70% of the mouse fibroblasts have between 5 and 10 initiation sites with an average of 8. The human fibroblasts have an average of 5 sites per cell. The average number and numerical distribution of sites per fibroblast cell are not affected by time of exposure to colcemid or the concentration of colcemid applied to the cells. Multiple microtubule initiation sites are also observed during the process of microtubule depolymerization. In addition to growth from these complex initiation sites, microtubules appear to grow singly from the perinuclear region of human fibroblasts. The regrowth of individual microtubules from the perinuclear growth is especially prominent in epithelial cell lines from rat kangaroo and pig. These epithelial lines have only a single complex initiation site per cell. Two classes of complex initiation sites can be distinguished in microtubule regrowth experiments in human and mouse fibroblasts after exposure to griseofulvin. Microtubules first grow extensively from a single distinct site, which has approximately 20 microtubules growing from it and may be the centriole or centriolar pair. Subsequently, microtubules regrow from other perinuclear complex initiation sites. It thus appears that at least three distinct classes of initiation sites can be observed in mammalian cells: primary sites, which regrow microtubules first after griseofulvin treatment; secondary sites, which are distinct perinuclear sites and recover from griseofulvin treatment more slowly than the primary sites; and tertiary sites or sites of growth of single microtubules, also located near the cell nucleus.  相似文献   

17.
Tubulin undergoes posttranslational modifications proposed to specify microtubule subpopulations for particular functions. Most of these modifications occur on the C-termini of tubulin and may directly affect the binding of microtubule-associated proteins (MAPs) or motors. Acetylation of Lys-40 on α-tubulin is unique in that it is located on the luminal surface of microtubules, away from the interaction sites of most MAPs and motors. We investigate whether acetylation alters the architecture of microtubules or the conformation of tubulin, using cryo–electron microscopy (cryo-EM). No significant changes are observed based on protofilament distributions or microtubule helical lattice parameters. Furthermore, no clear differences in tubulin structure are detected between cryo-EM reconstructions of maximally deacetylated or acetylated microtubules. Our results indicate that the effect of acetylation must be highly localized and affect interaction with proteins that bind directly to the lumen of the microtubule. We also investigate the interaction of the tubulin acetyltransferase, αTAT1, with microtubules and find that αTAT1 is able to interact with the outside of the microtubule, at least partly through the tubulin C-termini. Binding to the outside surface of the microtubule could facilitate access of αTAT1 to its luminal site of action if microtubules undergo lateral opening between protofilaments.  相似文献   

18.
Dynamics of microtubule depolymerization in monocytes   总被引:18,自引:16,他引:2       下载免费PDF全文
Human monocytes, which contain few interphase microtubules (35.+/- 7.7), were used to study the dynamics of microtubule depolymerization. Steady-state microtubule assembly was abruptly blocked with either high concentrations of nocodazole (10 micrograms/ml) or exposure to cold temperature (3 degrees C). At various times after inhibition of assembly, cells were processed for anti-tubulin immunofluorescence microscopy. Stained cells were observed with an intensified video camera attached to the fluorescence microscope. A tracing of the entire length of each individual microtubule was made from the image on the television monitor by focusing up and down through the cell. The tracings were then digitized into a computer. All microtubules were seen to originate from the centrosome, with an average length in control cells of 7.1 +/- 2.7 microns (n = 957 microtubules). During depolymerization, the total microtubule polymer and the number of microtubules per cell decreased rapidly. In contrast, there was a slow decrease in the average length of the persisting microtubules. The half-time for both the loss of total microtubule polymer and microtubule number per cell was approximately 40 s for nocodazole-treated cells. The rate-limiting step in the depolymerization process was the rate of initiation of disassembly. Once initiated, depolymerization appeared catastrophic. Further kinetic analysis revealed two classes of microtubules: 70% of the microtubule population was very labile and initiated depolymerization at a rate approximately 23 times faster than a minor population of persistent microtubules. Cold treatment yielded qualitatively similar characteristics of depolymerization, but the initiation rates were slower. In both cases there was a significant asynchrony and heterogeneity in the initiation of depolymerization among the population of microtubules.  相似文献   

19.
Microtubules that are free of microtubule-associated protein undergo dynamic changes at steady state, becoming longer but fewer in number with time through a process which was previously assumed to be based entirely on mechanisms of subunit exchange at polymer ends. However, we recently demonstrated that brain and erythrocyte microtubules are capable of joining end-to-end and suggested that polymer annealing may also affect the dynamic behavior of microtubules in vitro (Rothwell, S. W., W. A. Grasser, and D. B. Murphy, 1986, J. Cell Biol. 102:619-627). In the present study, we first show that annealing is a general property of cytoplasmic microtubules and is not a specialized characteristic of erythrocyte microtubules by documenting annealing between tryosinolated and detyrosinolated brain microtubules. We then examine the contributions of polymer annealing and subunit exchange to microtubule dynamics by analyzing the composition and length of individual polymers in a mixture of brain and erythrocyte microtubules by immunoelectron microscopy. In concentrated preparations of short-length microtubules at polymer-mass steady state, annealing was observed to be the principal factor responsible for the increase in polymer length, whereas annealing and subunit exchange contributed about equally to the reduction in microtubule number.  相似文献   

20.
Microtubules form arrays with parallel and antiparallel bundles and function in various cellular processes, including subcellular transport and cell division. The antiparallel bundles in phragmoplasts, plant-unique microtubule arrays, are mostly unexplored and potentially offer new cellular insights. Here, we report that the Physcomitrella patens kinesins KINID1a and KINID1b (for kinesin for interdigitated microtubules 1a and 1b), which are specific to land plants and orthologous to Arabidopsis thaliana PAKRP2, are novel factors indispensable for the generation of interdigitated antiparallel microtubules in the phragmoplasts of the moss P. patens. KINID1a and KINID1b are predominantly localized to the putative interdigitated parts of antiparallel microtubules. This interdigitation disappeared in double-deletion mutants of both genes, indicating that both KINID1a and 1b are indispensable for interdigitation of the antiparallel microtubule array. Furthermore, cell plates formed by these phragmoplasts did not reach the plasma membrane in ∼20% of the mutant cells examined. We observed that in the double-deletion mutant lines, chloroplasts remained between the plasma membrane and the expanding margins of the cell plate, while chloroplasts were absent from the margins of the cell plates in the wild type. This suggests that the kinesins, the antiparallel microtubule bundles with interdigitation, or both are necessary for proper progression of cell wall expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号