共查询到20条相似文献,搜索用时 0 毫秒
1.
用PCR法和DNA杂交法检测同一献血员的白细胞及血清中的HCMV-DNA,并用ELISA法检测血清中的HCMV-IgM、IgG(测四个不度),连续两年共检测白细胞和血清样本各200人份。PCR法检测白细胞中的HCMV-DNA阳性率分别为63%和70%,DNA杂交法检测的阳性率为42%和50%。PCR法检测血清中的HCMV-DNA的阳性率为49%和53%,DNA杂交法检测的阳性率为33%和39%。H 相似文献
2.
Martin Frank Ross C. Walker William N. Lanzilotta James H. Prestegard Adam W. Barb 《Journal of molecular biology》2014
The fragment crystallizable (Fc) region links the key pathogen identification and destruction properties of immunoglobulin G (IgG). Pathogen opsonization positions Fcs to activate pro-inflammatory Fcγ receptors (FcγRs) on immune cells. The cellular response and committal to a damaging, though protective, immune response are tightly controlled at multiple levels. Control mechanisms are diverse and in many cases unclear, but one frequently suggested contribution originates in FcγR affinity being modulated through shifts in Fc conformational sampling. Here, we report a previously unseen IgG1 Fc conformation. This observation motivated an extensive molecular dynamics investigation of polypeptide and glycan motions that revealed greater amplitude of motion for the N-terminal Cγ2 domains and N-glycan than previously observed. Residues in the Cγ2/Cγ3 interface and disulfide-bonded hinge were identified as influencing the Cγ2 motion. Our results are consistent with a model of Fc that is structurally dynamic. Conformational states that are competent to bind immune-stimulating FcγRs interconverted with Fc conformations distinct from those observed in FcγR complexes, which may represent a transient, nonbinding population. 相似文献
3.
Alysia A. Ahmed John Giddens Andrew Pincetic Joseph V. Lomino Jeffrey V. Ravetch Lai-Xi Wang Pamela J. Bjorkman 《Journal of molecular biology》2014
Immunoglobulin G (IgG) is a central mediator of host defense due to its ability to recognize and eliminate pathogens. The recognition and effector responses are encoded on distinct regions of IgGs. The diversity of the antigen recognition Fab domains accounts for IgG's ability to bind with high specificity to essentially any antigen. Recent studies have indicated that the Fc effector domain also displays considerable heterogeneity, accounting for its complex effector functions of inflammation, modulation, and immune suppression. Therapeutic anti-tumor antibodies, for example, require the pro-inflammatory properties of the IgG Fc to eliminate tumor cells, while the anti-inflammatory activity of intravenous IgG requires specific Fc glycans for activity. In particular, the anti-inflammatory activity of intravenous IgG is ascribed to a small population of IgGs in which the Asn297-linked complex N-glycans attached to each Fc CH2 domain include terminal α2,6-linked sialic acids. We used chemoenzymatic glycoengineering to prepare fully disialylated IgG Fc and solved its crystal structure. Comparison of the structures of asialylated Fc, sialylated Fc, and F241A Fc, a mutant that displays increased glycan sialylation, suggests that increased conformational flexibility of the CH2 domain is associated with the switch from pro-inflammatory to anti-inflammatory activity of the Fc. 相似文献
4.
5.
We explore a strategy to substantially increase the half-life of recombinant proteins by genetic fusion to FcIII, a 13-mer IgG-Fc domain binding peptide (IgGBP) originally identified by DeLano and co-workers at Genentech [DeLano WL, et al. (2000) Science 287∶1279–1283]. IgGBP fusion increases the in vivo half-life of proteins by enabling the fusion protein to bind serum IgG, a concept originally introduced by DeLano and co-workers in a patent but that to the best of our knowledge has never been pursued in the scientific literature. To further investigate the in vitro and in vivo properties of IgGBP fusion proteins, we fused FcIII to the C-terminus of a model fluorescent protein, monomeric Katushka (mKate). mKate-IgGBP fusions are easily expressed in Escherichia coli and bind specifically to human IgG with an affinity of ∼40 nM and ∼20 nM at pH 7.4 and pH 6, respectively, but not to mouse or rat IgG isotypes. mKate-IgGBP binds the Fc-domain of hIgG1 at a site overlapping the human neonatal Fc receptor (hFcRn) and as a consequence inhibits the binding of hIgG1 to hFcRn in vitro. High affinity binding to human IgG also endows mKate-IgGBP with a long circulation half-life of ∼8 hr in mice, a 75-fold increase compared to unmodified mKate. Thus, IgGBP fusion significantly reduces protein clearance by piggybacking on serum IgG without substantially increasing protein molecular weight due to the small size of the IgGBP. These attractive features could result in protein therapies with reduced dose frequency and improved patient compliance. 相似文献
6.
7.
Cell proteins of Mycoplasma salivarium were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to membranes, then examined for reactivity with human IgG molecules, the Fc fragment of human IgG, and concanavalin A (ConA). Multiple protein bands bound IgG, and most of them also bound ConA. One (corresponding to a molecular mass of 90 kDa) of the IgG- and ConA-binding bands intensely interacted with the Fc fragment of IgG. The reactivity of proteins eluted from the band with the Fc fragment, tested by dot-blotting and ELISA, was inhibited (90%) by pre-incubation with IgG and to a lesser extent (50%), with IgM. Thus, M. salivarium contained a cellular protein with a molecular mass of 90 kDa, that bound the Fc fragment of human IgG. 相似文献
8.
Naresh Chennamsetty Vladimir Voynov Bernhardt L. Trout 《Journal of molecular biology》2009,391(2):404-413
Therapeutic antibodies of many different IgG subclasses (IgG1, IgG2 and IgG4) are used in the treatment of various cancers, rheumatoid arthritis and other inflammatory and infectious diseases. These antibodies are stored for long durations under high concentrations as required in the disease treatment. Unfortunately, these antibodies aggregate under these storage conditions, leading to a decrease in antibody activity and raising concerns about causing an immunological response. Thus, there is a tremendous need to identify the aggregation-prone regions in different classes of antibodies. We use the SAP (spatial-aggregation-propensity) technology based on molecular simulations to determine the aggregation-prone motifs in the constant regions of IgG1 classes of antibodies. Mutations engineered on these aggregation-prone motif regions led to antibodies of enhanced stability. Fourteen aggregation-prone motifs are identified, with each motif containing one to seven residues. While some of these motifs contain residues that are neighbors in primary sequence, others contain residues that are far apart in primary sequence but are close together in the tertiary structure. Comparison of the IgG1 sequence with those of other subclasses (IgG2, IgG3 and IgG4) showed that these aggregation-prone motifs are largely preserved among all IgG subclasses. Other broader classes of antibodies (IgA1, IgD, IgE and IgM), however, differed in these motif regions. The aggregation-prone motifs identified were therefore common to all IgG subclasses, but differ from those of non-IgG classes. Moreover, since the motifs identified are in the constant regions, they are applicable for all antibodies within the IgG class irrespective of the variable region. Thus, the motif regions identified could be modified on all IgGs to yield antibodies of enhanced stability. 相似文献
9.
10.
The human cytomegalovirus UL34 gene encodes a sequence-specific DNA binding protein that downregulates expression of the viral immune evasion gene US3. Analysis of the viral genome identified 14 potential UL34 binding sites. Using mobility shift experiments, UL34 bound to all predicted sites that were assayed (7 of 14). Furthermore, the UL34 binding site present within the regulatory region of the US9 gene downregulates expression in a manner similar to that seen for the US3 gene. 相似文献
11.
Willem Jan R. Fokkink David Falck Tom C. M. Santbergen Ruth Huizinga Manfred Wuhrer Bart C. Jacobs 《PloS one》2015,10(10)
Intravenous immunoglobulin (IVIg) products from different pharmaceutical companies vary in composition, in part because of the selected blood donors and production process. N-glycosylation of the Fc-portion of IgG varies between blood donors and may influence both the side-effects and therapeutic effectiveness of IVIg. At present, the variation in Fc N-glycosylation between IVIg products has not been defined. Utilizing mass spectrometry, we performed relative quantitation of the Fc N-glycosylation of IgG, assessing a total of 154 unique lot numbers of IVIg. Seven products showed comparable Fc N-glycosylation, with only one product differing from the others in all glycosylation features (galactosylation, sialylation, fucosylation and bisecting N-acetylglucosamine). However, the mean difference did not exceed 3%. Within product variation was present to a minor degree, but largely indistinguishable from analytical variation. In conclusion, we expect that the minor variation in Fc N-glycosylation between IVIg products has a small effect, if any, on the biological activity. 相似文献
12.
13.
Cloning of the Human Cytomegalovirus (HCMV) Genome as an Infectious Bacterial Artificial Chromosome in Escherichia coli: a New Approach for Construction of HCMV Mutants 总被引:4,自引:0,他引:4
下载免费PDF全文

Eva-Maria Borst Gabriele Hahn Ulrich H. Koszinowski Martin Messerle 《Journal of virology》1999,73(10):8320-8329
We have recently introduced a novel procedure for the construction of herpesvirus mutants that is based on the cloning and mutagenesis of herpesvirus genomes as infectious bacterial artificial chromosomes (BACs) in Escherichia coli (M. Messerle, I. Crnkovic, W. Hammerschmidt, H. Ziegler, and U. H. Koszinowski, Proc. Natl. Acad. Sci. USA 94:14759-14763, 1997). Here we describe the application of this technique to the human cytomegalovirus (HCMV) strain AD169. Since it was not clear whether the terminal and internal repeat sequences of the HCMV genome would give rise to recombination, the stability of the cloned HCMV genome was examined during propagation in E. coli, during mutagenesis, and after transfection in permissive fibroblasts. Interestingly, the HCMV BACs were frozen in defined conformations in E. coli. The transfection of the HCMV BACs into human fibroblasts resulted in the reconstitution of infectious virus and isomerization of the reconstituted genomes. The power of the BAC mutagenesis procedure was exemplarily demonstrated by the disruption of the gpUL37 open reading frame. The transfection of the mutated BAC led to plaque formation, indicating that the gpUL37 gene product is dispensable for growth of HCMV in fibroblasts. The new procedure will considerably speed up the construction of HCMV mutants and facilitate genetic analysis of HCMV functions. 相似文献
14.
Human cytomegalovirus (HCMV) UL82 gene product (pp71) relieves hDaxx-mediated repression of HCMV replication 总被引:3,自引:0,他引:3
下载免费PDF全文

This study examines the role of the cellular protein hDaxx in controlling human cytomegalovirus (HCMV) immediate-early (IE) gene expression and viral replication. Using permissive cell lines that either overexpress hDaxx or are depleted of hDaxx expression by the use of short hairpin RNA, we demonstrate that hDaxx functions as a repressor of HCMV IE gene expression and replication. In addition, we demonstrate that the impaired growth phenotype associated with the UL82 (pp71) deletion mutant is abolished when hDaxx knockdown cells are infected, suggesting that pp71 functions to relieve hDaxx-mediated repression during HCMV infection. 相似文献
15.
Elisa Gabanti Francesca Bruno Daniele Lilleri Chiara Fornara Paola Zelini Ilaria Cane Clara Migotto Eleonora Sarchi Milena Furione Giuseppe Gerna 《PloS one》2014,9(8)
In solid-organ transplant recipients (SOTR) the protective role of human cytomegalovirus (HCMV)-specific CD4+, CD8+ and γδ T-cells vs. HCMV reactivation requires better definition. The aim of this study was to investigate the relevant role of HCMV-specific CD4+, CD8+ and γδ T-cells in different clinical presentations during the post-transplant period. Thirty-nine SOTR underwent virologic and immunologic follow-up for about 1 year after transplantation. Viral load was determined by real-time PCR, while immunologic monitoring was performed by measuring HCMV-specific CD4+ and CD8+ T cells (following stimulation with autologous HCMV-infected dendritic cells) and γδ T-cells by flow cytometry. Seven patients had no infection and 14 had a controlled infection, while both groups maintained CD4+ T-cell numbers above the established cut-off (0.4 cell/µL blood). Of the remaining patients, 9 controlled the infection temporarily in the presence of HCMV-specific CD8+ only, until CD4+ T-cell appearance; while 9 had to be treated preemptively due to a viral load greater than the established cut-off (3×105 DNA copies/mL blood) in the absence of specific CD4+ T-cells. Polyfunctional CD8+ T-cells as well as Vδ2− γδ T-cells were not associated with control of infection. In conclusion, in the absence of HCMV-specific CD4+ T-cells, no long-term protection is conferred to SOTR by either HCMV-specific CD8+ T-cells alone or Vδ2− γδ T-cell expansion. 相似文献
16.
Jan Terje Andersen Muluneh Bekele Daba G?ril Berntzen Terje E. Michaelsen Inger Sandlie 《The Journal of biological chemistry》2010,285(7):4826-4836
The neonatal Fc receptor (FcRn) regulates the serum half-life of both IgG and albumin through a pH-dependent mechanism that involves salvage from intracellular degradation. Therapeutics and diagnostics built on IgG, Fc, and albumin fusions are frequently evaluated in rodents regarding biodistribution and pharmacokinetics. Thus, it is important to address cross-species ligand reactivity with FcRn, because in vivo testing of such molecules is done in the presence of competing murine ligands, both in wild type (WT) and human FcRn (hFcRn) transgenic mice. Here, binding studies were performed in vitro using enzyme-linked immunosorbent assay and surface plasmon resonance with recombinant soluble forms of human (shFcRnWT) and mouse (smFcRnWT) receptors. No binding of albumin from either species was observed at physiological pH to either receptor. At acidic pH, a 100-fold difference in binding affinity was observed. Specifically, smFcRnWT bound human serum albumin with a KD of ∼90 μm, whereas shFcRnWT bound mouse serum albumin with a KD of 0.8 μm. shFcRnWT ignored mouse IgG1, and smFcRnWT bound strongly to human IgG1. The latter pair also interacted at physiological pH with calculated affinity in the micromolar range. In all cases, binding of albumin and IgG from either species to both receptors were additive. Cross-species albumin binding differences could partly be explained by non-conserved amino acids found within the α2-domain of the receptor. Such distinct cross-species FcRn binding differences must be taken into consideration when IgG- and albumin-based therapeutics and diagnostics are evaluated in rodents for their pharmacokinetics. 相似文献
17.
Site specific glycosylation of immunoglobulin G (IgG) occurs at Asn297 in the Fc region. The heterogeneous ensemble of glycoform occurs due to the degree of terminal galactosylation and sialylation, and these differences in glycosylation affect both the pharmacokinetic behavior and effector functions of the IgG, such as complementdependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC). In this study, the differential glycosylation of IgG was compared and environmental physical and chemical parameters were evaluated in an attempt to promote glycosylation of recombinant antibodies, thereby creating more humanized glycoform antibodies and increasing their in vivo efficacy as therapeutic drugs. It was shown that cells at late stationary growth phase in batch cultures, cells with increased passage number, and the culture conditions of lowered temperature and pH promoted galactosylation and sialylation of antibodies. Galactose, fructose and mannose were found to elicit galactosylation and sialylation when they were used alone as a substitute of glucose. Mannose showed synergistic effects on glycosylation when used with other sugars, such as glucose and galactose. However when fructose was used with other sugars, the degree of galactosylation mechanism appeared to be decreased. These results support understandings of the glycosylation mechanisms in glycoprotein, particularly recombinant antibodies for therapeutics. 相似文献
18.
Cytomegalovirus Basic Phosphoprotein (pUL32) Binds to Capsids In Vitro through Its Amino One-Third
下载免费PDF全文

The cytomegalovirus (CMV) basic phosphoprotein (BPP) is a component of the tegument. It remains with the nucleocapsid fraction under conditions that remove most other tegument proteins from the virion, suggesting a direct and perhaps tight interaction with the capsid. As a step toward localizing this protein within the molecular structure of the virion and understanding its function during infection, we have investigated the BPP-capsid interaction. In this report we present evidence that the BPP interacts selectively, through its amino one-third, with CMV capsids. Radiolabeled simian CMV (SCMV) BPP, synthesized in vitro, bound to SCMV B-capsids, and C-capsids to a lesser extent, following incubation with either isolated capsids or lysates of infected cells. Human CMV (HCMV) BPP (pUL32) also bound to SCMV capsids, and SCMV BPP likewise bound to HCMV capsids, indicating that the sequence(s) involved is conserved between the two proteins. Analysis of SCMV BPP truncation mutants localized the capsid-binding region to the amino one-third of the molecule--the portion of BPP showing the greatest sequence conservation between the SCMV and HCMV homologs. This general approach may have utility in studying the interactions of other proteins with conformation-dependent binding sites. 相似文献
19.
B Bettler G Texido S Raggini D Rüegg H Hofstetter 《The Journal of biological chemistry》1992,267(1):185-191
The IgE-binding site of the human low-affinity receptor for IgE (Fc epsilon RII/CD23) has previously been mapped to the extracellular domain between amino acid residues 160 and 287. We now have investigated which conformational epitope within this domain specifies the receptor-ligand interaction. The analysis of homolog-scanning mutants expressed in mammalian cells demonstrates that amino acid side chains that affect IgE binding are located in two discontinuous segments, between residues 165-190 and 224-256. The overall structure of the chimeric binding domains, as probed with 11 conformation-sensitive monoclonal antibodies, is generally not distorted, except by replacement of residues 165-183. In this region, disruption of binding function appears to be caused by global conformational constraints on the binding site. Substitution and deletion mutants demonstrate that six out of eight extracellular cysteines, Cys163, Cys174, Cys191, Cys259, Cys273, and Cys282, are necessary for IgE binding and are most likely involved in intramolecular disulfide bridges. We show that the Fc epsilon RII domain delineated by Cys163 and Cys282 encodes all the structural information required to form the IgE-binding site. 相似文献
20.
Characterization of Antibody Bipolar Bridging Mediated by the Human Cytomegalovirus Fc Receptor gp68
Blaise Ndjamen Devashish S. Joshi Scott E. Fraser Pamela J. Bjorkman 《Journal of virology》2016,90(6):3262-3267
The human cytomegalovirus glycoprotein gp68 functions as an Fc receptor for host IgGs and can form antibody bipolar bridging (ABB) complexes in which gp68 binds the Fc region of an antigen-bound IgG. Here we show that gp68-mediated endocytosis transports ABB complexes into endosomes, after which the complex is routed to lysosomes, presumably for degradation. These results suggest gp68 contributes to evasion of IgG-mediated immune responses by mediating destruction of host IgG and viral antigens. 相似文献