首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs) targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2’-O-methyl RNA backbone. OCT4 and SOX2 MBs were transfected into human embryonic mesencephalon derived cells, which spontaneously form neurospheres when grown on poly-L-ornitine/fibronectin matrix and medium complemented with bFGF. OCT4 and SOX2 gene expression were tracked in individual cell using the MBs. Quantitative image analysis every day for seven days showed that the OCT4 and SOX2 mRNA-expressing cells clustered in the centre of the neurospheres cultured in differentiation medium. By contrast, cells at the periphery of the differentiating spheres developed neurite outgrowths and expressed the tyrosine hydroxylase protein, indicating terminal differentiation. Neurospheres cultured in growth medium contained OCT4 and SOX2-positive cells distributed throughout the entire sphere, and no differentiating neurones. Gene expression of SOX2 and OCT4 mRNA detected by MBs correlated well with gene and protein expression measured by qRT-PCR and immunostaining, respectively. These experimental data support the theoretical model that stem cells cluster in the centre of neurospheres, and demonstrate the use of MBs for the spatial localization of specific gene-expressing cells within heterogeneous cell populations.  相似文献   

2.
3.
Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including florescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs) conjugated with antibodies (i.e., targeted biotin-MBs). Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10g for 1 min, and then allowed 1 hour at 4°C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs), which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44+) and MDA-MB-453 cells (CD44), which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44+ is a commonly used cancer-stem-cell biomarker, our targeted biotin-MBs could be a potent tool to sort cancer stem cells from dissected tumor tissue for use in preclinical experiments and clinical trials.  相似文献   

4.
Oval cells proliferate extensively in the livers of animals exposed to oncogenic insults, are bipotent and are believed to be related to the so far unidentified liver stem cell. In normal liver, cells antigenica lly related to oval cells and expressing liver and epithelial markers are considered to be liver progenitor cells. We isolated, by fluorescence-activated cell sorting or magnetic bead sorting, cells expressing the oval cell antigens OC.2 or OC.3 from the liver of normal newborn or day 12 embryonal age rats. Magnetic bead sorting of positive cells was as efficient as fluorescence-activated cell sorting. A two-chamber culture system was devised in which cells were plated onto transwell filters coated with type IV collagen and cultured in a serum-free Ham's F12 medium supplemented with free fatty acids and bovine serum albumin. Under these conditions, cells remained viable for up to 6 weeks and their antigenic phenotype was unchanged throughout. Approximately 30% of sorted cells expressed epithelial and/or liver-specific markers. Growth factors mitogenic for epithelial cells and hepatocytes did not elicit cell proliferation. These results provide an important background for further studies designed to determine the biological significance of OC.2+ and OC.3+ cells in normal liver, to test the liver stem cell hypothesis and to develop protocols for the expansion in vitro of normal liver progenitors. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.

Introduction

Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous.

Methods

Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis.

Results

The proportion of cells expressing CD44highCD24low/neg, side population (SP) cells, ALDH1+, CD49fhigh, CD133high, and CD34high differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1+, CD34low, and CD49fhigh suggested properties of transit amplifying cells. Colony formation was higher from ALDH1 and non-SP cells than ALDH1+ and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than “non-stem” cells. Fewer SP cells were needed to form tumors than ALDH1+ cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined.

Conclusions

These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.  相似文献   

6.
Cancer stem cells (CSCs) are subpopulations of tumor cells that are responsible for tumor initiation, maintenance and metastasis. Recent studies suggested that lung cancer arises from CSCs. In this study, the expression of potential CSC markers in cell line A549 was evaluated. We applied flow cytometry to assess the expression of putative stem cell markers, including aldehyde dehydrogenase 1 (ALDH1), CD24, CD44, CD133 and ABCG2. Cells were then sorted according to the expression of CD44 and CD24 markers by fluorescence-activated cell sorting (FACS) Aria II and characterized using their clonogenic and sphere-forming capacity. A549 cells expressed the CSC markers CD44 and CD24 at 68.16% and 54.46%, respectively. The expression of the putative CSC marker ALDH1 was 4.20%, whereas the expression of ABCG2 and CD133 was 0.93%. Double-positive CD44/133 populations were rare. CD44+/24+ and CD44+/CD24?/low subpopulations respectively exhibited 64% and 27.92% expression. The colony-forming potentials in the CD44+/CD24+ and CD44+/CD24?/low subpopulations were 84.37 ± 2.86% and 90 ± 3.06%, respectively, while the parental A549 cells yielded 56.65 ± 2.33% using the colony-formation assay. Both isolated subpopulations formed spheres in serumfree medium supplemented with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). CD44 and CD24 cannot be considered potential markers for isolating lung CSCs in cell line A549, but further investigation using in vivo assays is required.  相似文献   

7.
Multi-drug resistance is an important element which leads to ineffectiveness of chemotherapeutics. To identify subpopulations of cancerous prostate cells with mutli-drug resistance and cancer stem-cell properties has recently become a major research interest. We identified a subpopulation from the prostate cancer cell line 22RV1, which have high surface expression of both CD117 and ABCG2. We found this subpopulation of cells termed CD117+/ABCG2+ also overexpress stem cells markers such as Nanog, Oct4, Sox2, Nestin, and CD133. These cells are highly prolific and are also resistant to treatment with a variety of chemotherapeutics such as casplatin, paclitaxel, adriamycin, and methotrexate. In addition, CD117+/ABCG2+ cells can readily establish tumors in vivo in a relatively short time. To investigate the mechanism of aggressive tumor growth and drug resistance, we examined the CpG islands on the ABCG2 promoter of CD117+/ABCG2+ cells and found they were remarkably hypomethylated. Furthermore, chromatin immunoprecipitation assays revealed high levels of both histone 3 acetylation and H3K4 trimethylation at the CpG islands on the ABCG2 promoter. Our these data suggest that CD117+/ABCG2+ cells could be reliably sorted from the human prostate cancer cell line 22RV1, and represent a valuable model for studying cancer cell physiology and multi-drug resistance. Furthermore, identification and study of these cells could have a profound impact on selection of individual treatment strategies, clinical outcome, and the design or selection of the next generation of chemotherapeutic agents.  相似文献   

8.
《遗传学报》2022,49(3):230-239
Radiotherapy for head and neck cancer can cause serious side effects, including severe damage to the salivary glands, resulting in symptoms such as xerostomia, dental caries, and oral infection. Because of the lack of long-term treatment for the symptoms of xerostomia, current research has focused on finding endogenous stem cells that can differentiate into various cell lineages to replace lost tissues and restore functions. Here, we report that Sox9+ cells can differentiate into various salivary epithelial cell lineages under homeostatic conditions. After ablating Sox9+ cells, the salivary glands of irradiated mice showed more severe phenotypes and the reduced proliferative capacity. Analysis of online single-cell RNA-sequencing data reveals the enrichment of the Wnt/β-catenin pathway in the Sox9+ cell population. Furthermore, treatment with a Wnt/β-catenin inhibitor in irradiated mice inhibits the regenerative capability of Sox9+ cells. Finally, we show that Sox9+ cells are capable of forming organoids in vitro and that transplanting these organoids into salivary glands after radiation partially restored salivary gland functions. These results suggest that regenerative therapy targeting Sox9+ cells is a promising approach to treat radiation-induced salivary gland injury.  相似文献   

9.
Oct4 exerts a dose-dependent dual action, as both a gatekeeper for stem cell pluripotency and in driving cells toward specific lineages. Here, we identify the molecular mechanism underlying this dual function. BMP2- or transgene-induced Oct4 up-regulation drives human embryonic and induced pluripotent stem cells to become cardiac progenitors. When embryonic stem cell pluripotency is achieved, Oct4 switches from the Sox2 to the Sox17 promoter. This switch allows the cells to turn off the pluripotency Oct4-Sox2 loop and to turn on the Sox17 promoter. This powerful process generates a subset of endoderm-expressing Sox17 and Hex, both regulators of paracrine signals for cardiogenesis (i.e., Wnt, BMP2) released into the medium surrounding colonies of embryonic stem cells. Our data thus reveal a novel molecular Oct4- and Sox17-mediated mechanism that disrupts the stem cell microenvironment favoring pluripotency to provide a novel paracrine endodermal environment in which cell lineage is determined and commits the cells to a cardiogenic fate.  相似文献   

10.
Differentiation of resident multipotent vascular stem cells (MVSCs) or de-differentiation of vascular smooth muscle cells (vSMCs) might be responsible for the SMC phenotype that plays a major role in vascular diseases such as arteriosclerosis and restenosis. We examined vSMCs from three different species (rat, murine and bovine) to establish whether they exhibit neural stem cell characteristics typical of MVSCs. We determined their SMC differentiation, neural stem cell marker expression and multipotency following induction in vitro by using immunocytochemistry, confocal microscopy, fluorescence-activated cell sorting analysis and quantitative real-time polymerase chain reaction. MVSCs isolated from rat aortic explants, enzymatically dispersed rat SMCs and rat bone-marrow-derived mesenchymal stem cells served as controls. Murine carotid artery lysates and primary rat aortic vSMCs were both myosin-heavy-chain-positive but weakly expressed the neural crest stem cell marker, Sox10. Each vSMC line examined expressed SMC differentiation markers (smooth muscle α–actin, myosin heavy chain and calponin), neural crest stem cell markers (Sox10+, Sox17+) and a glia marker (S100β+). Serum deprivation significantly increased calponin and myosin heavy chain expression and decreased stem cell marker expression, when compared with serum-rich conditions. vSMCs did not differentiate to adipocytes or osteoblasts following adipogenic or osteogenic inductive stimulation, respectively, or respond to transforming growth factor-β1 or Notch following γ-secretase inhibition. Thus, vascular SMCs in culture express neural stem cell markers typical of MVSCs, concomitant with SMC differentiation markers, but do not retain their multipotency. The ultimate origin of these cells might have important implications for their use in investigations of vascular proliferative disease in vitro.  相似文献   

11.
12.
The in vitro culture system for spermatogonial stem cells (SSCs) is a powerful tool for exploring molecular mechanisms of male gametogenesis and gene manipulation. Very little information is available for fish SSC biology. Our aim was to isolate highly pure SSCs from the testis of commercially important farmed carp, Labeo rohita. The minced testis of L. rohita was dissociated with collagenase. Dissociated cells purified by two-step Ficoll gradient centrifugation followed by magnetic activated cell sorting (MACS) using Thy1.2 (CD90.2) antibody dramatically heightened recovery rate for spermatogonial cells. The purified cells were cultured in vitro conditions for more than two months in L-15 media containing 10% fetal bovine serum (FBS), 1% carp serum, and other nutrients. The proliferative cells were dividing as validated by 5-bromo-2′-deoxyuridine (BrdU) incorporation assay and formed colonies/clumps with the typical characteristics of SSCs A majority of enriched cell population represented a Vasa+, Pou5f1/pou5f1+, Ssea-1+, Tra-1-81+, plzf+, Gfrα1/gfrα1, and c-Kit/c-kit as detected by immunocytochemical and/or quantitative real-time polymerase chain reaction (RT-PCR) analyses. Thus, Thy1+ SSCs were enriched with greater efficiency from the mixed population of testicular cells of L. rohita. A population of enriched spermatogonial cells could be cultured in an undifferentiated state. The isolated SSCs could provide avenue for undertaking research on basic and applied reproductive biology.  相似文献   

13.
摘要 目的:提取小鼠骨髓细胞(bone marrow cell, BMC),用两种不同的免疫磁珠分离(magnetic activated cell sorting, MACS)试剂盒从小鼠BMC中分选提纯粒-单核祖细胞(granulocyte-monocyte progenitor, GMP),比较这两种免疫磁珠的分选效率。方法:从小鼠股骨和胫骨中提取BMC,通过两种不同的MACS试剂盒,即Lineage阳性细胞清除试剂盒和CD117阳性细胞分选试剂盒,分别得到Lineage-细胞群和CD117+细胞群,用代表GMP细胞表面标志物的荧光抗体标记,孵育后通过流式细胞荧光分选技术得到GMP细胞,并且对比得到GMP细胞的效率。结果:每2只野生型C57BL/6J小鼠可共收集骨髓细胞(7.02±1.24)×107个,细胞活力为(91.86±5.24)%。经过Lineage阳性细胞清除试剂盒得到的细胞数量为(5.71±2.86)×106个;经过CD117阳性细胞分选试剂盒得到的细胞数量为(2.70±0.56)×106个。Lineage磁珠分选纯化得到的GMP细胞数占总细胞数的比例为(10.90±1.37)%,CD117磁珠分选纯化得到的GMP细胞数占总细胞数的比例为(4.83±2.08)%。结论:Lineage阳性细胞清除试剂盒能更有效分选小鼠骨髓细胞中的粒-单核祖细胞。  相似文献   

14.
Cycling Lgr5+ stem cells fuel the rapid turnover of the adult intestinal epithelium. The existence of quiescent Lgr5+ cells has been reported, while an alternative quiescent stem cell population is believed to reside at crypt position +4. Here, we generated a novel Ki67RFP knock-in allele that identifies dividing cells. Using Lgr5-GFP;Ki67RFP mice, we isolated crypt stem and progenitor cells with distinct Wnt signaling levels and cell cycle features and generated their molecular signature using microarrays. Stem cell potential of these populations was further characterized using the intestinal organoid culture. We found that Lgr5high stem cells are continuously in cell cycle, while a fraction of Lgr5low progenitors that reside predominantly at +4 position exit the cell cycle. Unlike fast dividing CBCs, Lgr5low Ki67 cells have lost their ability to initiate organoid cultures, are enriched in secretory differentiation factors, and resemble the Dll1 secretory precursors and the label-retaining cells of Winton and colleagues. Our findings support the cycling stem cell hypothesis and highlight the cell cycle heterogeneity of early progenitors during lineage commitment.  相似文献   

15.
Hepatocellular carcinoma (HCC) is a prevalent disease worldwide, and the majority of HCC-related deaths occur due to local invasion and distant metastasis. Cancer stem cells (CSCs) are a small subpopulation of cancer cells that have been hypothesized to be responsible for metastatic disease. Recently, we and others have identified a CSC population from human HCC cell lines and xenograft tumors characterized by their expression of CD133. However, the precise molecular mechanisms by which CD133+ cancer stem-like cells mediate HCC metastasis have not been sufficiently analyzed. Here, we have sorted HCC cells using CD133 as a cancer stem cell (CSC) marker by magnetic-activated cell sorting (MACS) and demonstrated that the CD133+ HCC cells not only possess greater migratory and invasive capacity in vitro but are also endowed with enhanced metastatic capacity in vivo and in human HCC specimens when compared to CD133 HCC cells. Gene expression analysis of the CD133+ and CD133 cells of the HCC line SMMC-7721 revealed that G protein-coupled receptor 87 (GPR87) is highly expressed in CD133+ HCC cells. In this study, we explored the role of GPR87 in the regulation of CD133 expression. We demonstrated that the overexpression of GPR87 up-regulated CD133 expression, promoted CSC-associated migratory and invasive properties in vitro, and increased tumor initiation in vivo. Conversely, silencing of GPR87 expression reduced the levels of CD133 expression. Conclusion: GPR87 promotes the growth and metastasis of CD133+ cancer stem-like cells, and our findings may reveal new targets for HCC prevention or therapy.  相似文献   

16.
Peng W  Bao Y  Sawicki JA 《Transgenic research》2011,20(5):1073-1086
To establish a method for efficient and relatively easy isolation of a cell population containing epithelial prostate stem cells, we developed two transgenic mouse models, K5/CFP and K18/RFP. In these models, promoters of the cytokeratin 5 (Krt5) and the cytokeratin 18 (Krt18) genes regulate cyan and red fluorescent proteins (CFP and RFP), respectively. CFP and RFP reporter protein fluorescence allows for visualization of K5+ and K18+ epithelial cells within the cellular spatial context of the prostate gland and for their direct isolation by FACS. Using these models, it is possible to test directly the stem cell properties of prostate epithelial cell populations that are positively selected based on expression of cytoplasmic proteins, K5 and K18. After validating appropriate expression of the K5/CFP and K18/RFP transgenes in the developing and adult prostate, we demonstrate that a subset of CFP-expressing prostate cells exhibits stem cell proliferation potential and differentiation capabilities. Then, using prostate cells sorted from double transgenic mice (K5/CFP + K18/RFP), we compare RNA microarrays of sorted K5+K18+ basal and K5K18+ luminal epithelial cells, and identify genes that are differentially expressed. Several genes that are over-expressed in K5+ cells have previously been identified as potential stem cell markers. These results suggest that FACS isolation of prostate cells from these mice based on combining reporter gene fluorescence with expression of potential stem cell surface marker proteins will yield populations of cells enriched for stem cells to a degree that has not been attained by using cell surface markers alone.  相似文献   

17.
18.
Fluorescent in situ hybridization (FISH) remains a key technique in microbial ecology. Molecular beacons (MBs) are self-reporting probes that have potential advantages over linear probes for FISH. MB-FISH strategies have been described using both DNA-based and peptide nucleic acid (PNA)-based approaches. Although recent reports have suggested that PNA MBs are superior, DNA MBs have some advantages, most notably cost. The data presented here demonstrate that DNA MBs are suitable for at least some FISH applications in complex samples, providing superior discriminatory power compared to that of corresponding linear DNA-FISH probes. The use of DNA MBs for flow cytometric detection of Pseudomonas putida resulted in approximately double the signal-to-noise ratio of standard linear DNA probes when using laboratory-grown cultures and yielded improved discrimination of target cells in spiked environmental samples, without a need for separate washing steps. DNA MBs were also effective for the detection and cell sorting of both spiked and indigenous P. putida from activated sludge and river water samples. The use of DNA MB-FISH presents another increase in sensitivity, allowing the detection of bacteria in environmental samples without the expense of PNA MBs or multilaser flow cytometry.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号