首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Integration of a conjugative plasmid into a bacterial chromosome can promote the transfer of chromosomal DNA to other bacteria. Intraspecies chromosomal conjugation is believed responsible for creating the global pathogens Klebsiella pneumoniae ST258 and Escherichia coli ST1193. Interspecies conjugation is also possible but little is known about the genetic architecture or fitness of such hybrids. To study this, we generated by conjugation 14 hybrids of E. coli and Salmonella enterica. These species belong to different genera, diverged from a common ancestor >100 Ma, and share a conserved order of orthologous genes with ∼15% nucleotide divergence. Genomic analysis revealed that all but one hybrid had acquired a contiguous segment of donor E. coli DNA, replacing a homologous region of recipient Salmonella chromosome, and ranging in size from ∼100 to >4,000 kb. Recombination joints occurred in sequences with higher-than-average nucleotide identity. Most hybrid strains suffered a large reduction in growth rate, but the magnitude of this cost did not correlate with the length of foreign DNA. Compensatory evolution to ameliorate the cost of low-fitness hybrids pointed towards disruption of complex genetic networks as a cause. Most interestingly, 4 of the 14 hybrids, in which from 45% to 90% of the Salmonella chromosome was replaced with E. coli DNA, showed no significant reduction in growth fitness. These data suggest that the barriers to creating high-fitness interspecies hybrids may be significantly lower than generally appreciated with implications for the creation of novel species.  相似文献   

3.
4.
The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the ‘model forest tree’ Populus.  相似文献   

5.
6.
The Genetic System Controlling Homothallism in Saccharomyces Yeasts   总被引:14,自引:7,他引:14       下载免费PDF全文
There are four types of life cycles in Saccharomyces cerevisiae and its related species. A perfect homothallic life cycle (the Ho type) is observed in the classic D strain. Two other types show semi-homothallism; one of them shows a 2-homothallic diploid:2alpha heterothallic haploid segregation (the Hp type) and another, a 2-homothallic:2a segregation (the Hq type). In the segregants from these Ho, Hp, and Hq diploids, each homothallic segregant shows the same segregation pattern as its parental diploid. The fourth type has a heterothallic life cycle showing a 2a:2alpha segregation and the diploids are produced by the fusion of two haploid cells of opposite mating types. The diploids prepared by the crosses of alpha Hp (an alpha haploid segregant from the Hp diploid) to a Hq (an a haploid from the Hq diploid) segregated two types (Type I and II) of the Ho type homothallic clone among their meiotic segregants. Genetic analyses were performed to investigate this phenomenon and the genotypes of the Ho type homothallic clones of Type I and Type II. Results of these genetic analyses have been most adequately explained by postulating three kinds of homothallic genes, each consisting of a single pair of alleles, HO/ho, HMalpha/hmalpha, and HMa/hma, respectively. One of them, the HMalpha locus, was proved to be loosely linked (64 stranes) to the mating-type locus. A spore having the HO hmalpha hma genotype gives rise to an Ho type homothallic diploid (Type I), the same as in the case of the D strain which has the HO HMalpha HMa genotype (Type II). A spore having the a HO hmalpha HMa or alpha HO HMalpha hma genotype will produce an Hp or Hq type homothallic diploid culture, respectively. The other genotypes, a HO HMalpha hma, alpha HO hmalpha HMa, and the genotypes combined with the ho allele give a heterothallic character to the spore culture. A possible molecular hypothesis for the mating-type differentiation with the controlling elements produced by the HMalpha and HMa genes is proposed.  相似文献   

7.
EcoHealth - In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an...  相似文献   

8.
《Autophagy》2013,9(3):263-265
Recently, we showed that the requirement of sterol glucoside (SG) during pexophagy in yeasts is dependent on the species and the nature of peroxisome inducers. Atg26, the enzyme that converts sterol to SG, is essential for degradation of very large methanol-induced peroxisomes, but only partly required for degradation of smaller-sized oleate- and amine-induced peroxisomes in Pichia pastoris. Moreover, oleate- and amine-induced peroxisomes of another yeast, Yarrowia lipolytica, are degraded by an Atg26-independent mechanism. The same is true for degradation of oleate-induced peroxisomes in Saccharomyces cerevisiae. Here, we review our findings on the specificity of Atg26 function in pexophagy and extend our observations to the role of SG in the cytoplasm to vacuole targeting (Cvt) pathway and bulk autophagy. The results presented here and elsewhere indicate that Atg26 might increase the efficacy of all autophagy-related pathways in P. pastoris, but not in other yeasts. Recently, it was shown that P. pastoris Atg26 (PpAtg26) is required for elongation of the pre-autophagosomal structure (PAS) into the micropexophagic membrane apparatus (MIPA) during micropexophagy. Therefore, we speculate that SG might facilitate elongation of any double membrane from the PAS and this enhancer function of SG becomes essential when extremely large double membranes are formed.

Addendum to:

The Requirement of Sterol Glucoside for Pexophagy in Yeast Is Dependent on the Species and Nature of Peroxisome Inducers

T.Y. Nazarko, A.S. Polupanov, R.R. Manjithaya, S. Subramani and A.A. Sibirny

Mol Biol Cell 2007; 18:106-18  相似文献   

9.
Many pathogenic yeast species are asexual and therefore not involved in intra- or interspecies mating. However, high-frequency transfer of plasmid DNA was observed when pathogenic and food-borne yeasts were grown together. This property could play a crucial role in the spread of virulence and drug resistance factors among yeasts.  相似文献   

10.
The genus Saccharomyces consists of several species divided into the sensu stricto and the sensu lato groups. The genomes of these species differ in the number and organization of nuclear chromosomes and in the size and organization of mitochondrial DNA (mtDNA). In the present experiments we examined whether these yeasts can exchange DNA and thereby create novel combinations of genetic material. Several putative haploid, heterothallic yeast strains were isolated from different Saccharomyces species. All of these strains secreted an a- or alpha-like pheromone recognized by S. cerevisiae tester strains. When interspecific crosses were performed by mass mating between these strains, hybrid zygotes were often detected. In general, the less related the two parental species were, the fewer hybrids they gave. For some crosses, viable hybrids could be obtained by selection on minimal medium and their nuclear chromosomes and mtDNA were examined. Often the frequency of viable hybrids was very low. Sometimes putative hybrids could not be propagated at all. In the case of sensu stricto yeasts, stable viable hybrids were obtained. These contained both parental sets of chromosomes but mtDNA from only one parent. In the case of sensu lato hybrids, during genetic stabilization one set of the parental chromosomes was partially or completely lost and the stable mtDNA originated from the same parent as the majority of the nuclear chromosomes. Apparently, the interspecific hybrid genome was genetically more or less stable when the genetic material originated from phylogenetically relatively closely related parents; both sets of nuclear genetic material could be transmitted and preserved in the progeny. In the case of more distantly related parents, only one parental set, and perhaps some fragments of the other one, could be found in genetically stabilized hybrid lines. The results obtained indicate that Saccharomyces yeasts have a potential to exchange genetic material. If Saccharomyces isolates could mate freely in nature, horizontal transfer of genetic material could have occurred during the evolution of modern yeast species.  相似文献   

11.
非常规酵母基因工程表达系统   总被引:4,自引:2,他引:4  
非常规酵母系指除了酿酒酵母与粟裂殖酵母之外的酵母曹。非常规酵母可利用其自主复制序列构建载体,但整合载体是进行外源基因导入的主要方式。非常规酵母的转化有一定的宿主范围,可采用与酿酒酵母相同的方法,最常用的仍为化学法。高效表达元件可利用酿酒酵母的强启动子,也可以根据非常规酵母菌的代谢特点寻找强启动子.本文综述了近年来应用非常规酵母基因表达系统表达外源基因的一些实例。  相似文献   

12.
13.
从8个正向引物和11个反向引物随机组合成的88个引物对中筛选出14个引物组合,对19株酵母菌进行PCR扩增。采用正交试验设计方法,对SRAP的影响因素进行研究,从Mg2+、dNTPs、DNA浓度、引物、TaqDNA聚合酶设计5因素4水平进行优化试验,以确定PCR电泳分析的最佳条件。14个引物组合共扩增出279条带,其中92.5%呈多态性,相似系数范围为0.60~1.00。  相似文献   

14.
15.
Experimental Evolution and Its Role in Evolutionary Physiology   总被引:4,自引:2,他引:2  
Four general approaches to the study of evolutionary physiology—phylogenetically-basedcomparisons, genetic analyses and manipulations, phenotypicplasticity and manipulation, and selection studies—areoutlined and discussed. We provide an example of the latter,the application of laboratory selection experiments to the studyof a general issue in environmental adaptation, differencesin adaptive patterns of generalists and specialists. A cloneof the bacterium Escherichia coli that had evolved in a constantenvironment of 37°C was replicated into 6 populations andallowed to reproduce for 2,000 generations in a variable thermalenvironment alternating between 32 and 42°C. As predictedby theory, fitness and efficiency of resource use increasedin this new environment, as did stress resistance. Contraryto predictions, however, fitness and efficiency in the constantancestral environment of 37°C did not decrease, nor didthermal niche breadth or phenotypic plasticity increase. Selectionexperiments can thus provide a valuable approach to testinghypotheses and assumptions about the evolution of functionalcharacters.  相似文献   

16.
Whole-genome duplications have shaped the genomes of several vertebrate, plant, and fungal lineages. Earlier studies have focused on establishing when these events occurred and on elucidating their functional and evolutionary consequences, but we still lack sufficient understanding of how genome duplications first originated. We used phylogenomics to study the ancient genome duplication occurred in the yeast Saccharomyces cerevisiae lineage and found compelling evidence for the existence of a contemporaneous interspecies hybridization. We propose that the genome doubling was a direct consequence of this hybridization and that it served to provide stability to the recently formed allopolyploid. This scenario provides a mechanism for the origin of this ancient duplication and the lineage that originated from it and brings a new perspective to the interpretation of the origin and consequences of whole-genome duplications.  相似文献   

17.
A Preliminary Investigation into the Role of Yeasts in the Ensiling Process   总被引:1,自引:1,他引:0  
The activities of six unidentified yeasts isolated from silage were monitored in a defined environment prepared to simulate a grass silage. Lactic acid and acetic acid contents of the silages were higher when yeasts were included in the inoculum used and the yeasts appeared to be beneficial to preservation. The yeasts also contributed to the small quantities of ethanol which were detected. Where a yeast was used as the sole inoculum the pH of the silage remained high, but lactic acid and acetic acid as well as ethanol were present in the resulting silages.  相似文献   

18.
Xu Y  Xu H  Wu X  Fang X  Wang J 《Biochemical genetics》2012,50(7-8):616-624
Genetic changes were investigated in two sets of independently synthesized Brasscia napus allopolyploids by the AFLP approach in the present study. We found that 1.17 % of the loci showed genetic changes following both hybridization and genome doubling in the synthesized B. napus F04J2 relative to its diploid progenitors, B. rapa (AA genome) and B. oleracea (CC genome). No significant difference between the proportion of A-genome-specific genetic changes and that of C-genome-specific genetic changes was detected in B. napus F04J2. Approximately 0.6 % of the loci displayed genetic changes following somatic genome doubling in the amphidiploid B. napus DCE11 relative to the amphihaploid in the dimorphic plants. This study showed that rapid genetic changes occurred after hybridization and/or genome doubling in synthesized B. napus allopolyploids and indicated that both hybridization and genome doubling could affect the genomic architecture in newly formed allopolyploids.  相似文献   

19.
Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis.  相似文献   

20.
Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号