首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterizing the spatial distribution of proteins directly from microscopy images is a difficult problem with numerous applications in cell biology (e.g. identifying motor-related proteins) and clinical research (e.g. identification of cancer biomarkers). Here we describe the design of a system that provides automated analysis of punctate protein patterns in microscope images, including quantification of their relationships to microtubules. We constructed the system using confocal immunofluorescence microscopy images from the Human Protein Atlas project for 11 punctate proteins in three cultured cell lines. These proteins have previously been characterized as being primarily located in punctate structures, but their images had all been annotated by visual examination as being simply “vesicular”. We were able to show that these patterns could be distinguished from each other with high accuracy, and we were able to assign to one of these subclasses hundreds of proteins whose subcellular localization had not previously been well defined. In addition to providing these novel annotations, we built a generative approach to modeling of punctate distributions that captures the essential characteristics of the distinct patterns. Such models are expected to be valuable for representing and summarizing each pattern and for constructing systems biology simulations of cell behaviors.  相似文献   

2.
Despite the structure and objectivity provided by the Gene Ontology (GO), the annotation of proteins is a complex task that is subject to errors and inconsistencies. Electronically inferred annotations in particular are widely considered unreliable. However, given that manual curation of all GO annotations is unfeasible, it is imperative to improve the quality of electronically inferred annotations. In this work, we analyze the full GO molecular function annotation of UniProtKB proteins, and discuss some of the issues that affect their quality, focusing particularly on the lack of annotation consistency. Based on our analysis, we estimate that 64% of the UniProtKB proteins are incompletely annotated, and that inconsistent annotations affect 83% of the protein functions and at least 23% of the proteins. Additionally, we present and evaluate a data mining algorithm, based on the association rule learning methodology, for identifying implicit relationships between molecular function terms. The goal of this algorithm is to assist GO curators in updating GO and correcting and preventing inconsistent annotations. Our algorithm predicted 501 relationships with an estimated precision of 94%, whereas the basic association rule learning methodology predicted 12,352 relationships with a precision below 9%.  相似文献   

3.
BACKGROUND: The annotation of genomes from next-generation sequencing platforms needs to be rapid, high-throughput, and fully integrated and automated. Although a few Web-based annotation services have recently become available, they may not be the best solution for researchers that need to annotate a large number of genomes, possibly including proprietary data, and store them locally for further analysis. To address this need, we developed a standalone software application, the Annotation of microbial Genome Sequences (AGeS) system, which incorporates publicly available and in-house-developed bioinformatics tools and databases, many of which are parallelized for high-throughput performance. METHODOLOGY: The AGeS system supports three main capabilities. The first is the storage of input contig sequences and the resulting annotation data in a central, customized database. The second is the annotation of microbial genomes using an integrated software pipeline, which first analyzes contigs from high-throughput sequencing by locating genomic regions that code for proteins, RNA, and other genomic elements through the Do-It-Yourself Annotation (DIYA) framework. The identified protein-coding regions are then functionally annotated using the in-house-developed Pipeline for Protein Annotation (PIPA). The third capability is the visualization of annotated sequences using GBrowse. To date, we have implemented these capabilities for bacterial genomes. AGeS was evaluated by comparing its genome annotations with those provided by three other methods. Our results indicate that the software tools integrated into AGeS provide annotations that are in general agreement with those provided by the compared methods. This is demonstrated by a >94% overlap in the number of identified genes, a significant number of identical annotated features, and a >90% agreement in enzyme function predictions.  相似文献   

4.
MOTIVATION: Assignment of putative protein functional annotation by comparative analysis using pre-defined experimental annotations is performed routinely by molecular biologists. The number and statistical significance of these assignments remains a challenge in this era of high-throughput proteomics. A combined statistical method that enables robust, automated protein annotation by reliably expanding existing annotation sets is described. An existing clustering scheme, based on relevant experimental information (e.g. sequence identity, keywords or gene expression data) is required. The method assigns new proteins to these clusters with a measure of reliability. It can also provide human reviewers with a reliability score for both new and previously classified proteins. RESULTS: A dataset of 27 000 annotated Protein Data Bank (PDB) polypeptide chains (of 36 000 chains currently in the PDB) was generated from 23 000 chains classified a priori. AVAILABILITY: PDB annotations and sample software implementation are freely accessible on the Web at http://pmr.sdsc.edu/go  相似文献   

5.
6.
Large-scale prokaryotic gene prediction and comparison to genome annotation   总被引:4,自引:0,他引:4  
MOTIVATION: Prokaryotic genomes are sequenced and annotated at an increasing rate. The methods of annotation vary between sequencing groups. It makes genome comparison difficult and may lead to propagation of errors when questionable assignments are adapted from one genome to another. Genome comparison either on a large or small scale would be facilitated by using a single standard for annotation, which incorporates a transparency of why an open reading frame (ORF) is considered to be a gene. RESULTS: A total of 143 prokaryotic genomes were scored with an updated version of the prokaryotic genefinder EasyGene. Comparison of the GenBank and RefSeq annotations with the EasyGene predictions reveals that in some genomes up to approximately 60% of the genes may have been annotated with a wrong start codon, especially in the GC-rich genomes. The fractional difference between annotated and predicted confirms that too many short genes are annotated in numerous organisms. Furthermore, genes might be missing in the annotation of some of the genomes. We predict 41 of 143 genomes to be over-annotated by >5%, meaning that too many ORFs are annotated as genes. We also predict that 12 of 143 genomes are under-annotated. These results are based on the difference between the number of annotated genes not found by EasyGene and the number of predicted genes that are not annotated in GenBank. We argue that the average performance of our standardized and fully automated method is slightly better than the annotation.  相似文献   

7.
As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum.  相似文献   

8.

Background  

Incorrectly annotated sequence data are becoming more commonplace as databases increasingly rely on automated techniques for annotation. Hence, there is an urgent need for computational methods for checking consistency of such annotations against independent sources of evidence and detecting potential annotation errors. We show how a machine learning approach designed to automatically predict a protein's Gene Ontology (GO) functional class can be employed to identify potential gene annotation errors.  相似文献   

9.
This Sequence Ontology (SO) [13] aims to unify the way in which we describe sequence annotations, by providing a controlled vocabulary of terms and the relationships between them. Using SO terms to label the parts of sequence annotations greatly facilitates downstream analyses of their contents, as it ensures that annotations produced by different groups conform to a single standard. This greatly facilitates analyses of annotation contents and characteristics, e.g. comparisons of UTRs, alternative splicing, etc. Because SO also specifies the relationships between features, e.g. part_of, kind_of, annotations described with SO terms are also better substrates for validation and visualization software.This document provides a step-by-step guide to producing a SO compliant file describing a sequence annotation. We illustrate this by using an annotated gene as an example. First we show where the terms needed to describe the gene's features are located in SO and their relationships to one another. We then show line by line how to format the file to construct a SO compliant annotation of this gene.  相似文献   

10.
Automated image analysis of protein localization in budding yeast   总被引:1,自引:0,他引:1  
MOTIVATION: The yeast Saccharomyces cerevisiae is the first eukaryotic organism to have its genome completely sequenced. Since then, several large-scale analyses of the yeast genome have provided extensive functional annotations of individual genes and proteins. One fundamental property of a protein is its subcellular localization, which provides critical information about how this protein works in a cell. An important project therefore was the creation of the yeast GFP fusion localization database by the University of California, San Francisco, USA (UCSF). This database provides localization data for 75% of the proteins believed to be encoded by the yeast genome. These proteins were classified into 22 distinct subcellular location categories by visual examination. Based on our past success at building automated systems to classify subcellular location patterns in mammalian cells, we sought to create a similar system for yeast. RESULTS: We developed computational methods to automatically analyze the images created by the UCSF yeast GFP fusion localization project. The system was trained to recognize the same location categories that were used in that study. We applied the system to 2640 images, and the system gave the same label as the previous assignments to 2139 images (81%). When only the highest confidence assignments were considered, 94.7% agreement was observed. Visual examination of the proteins for which the two approaches disagree suggests that at least some of the automated assignments may be more accurate. The automated method provides an objective, quantitative and repeatable assignment of protein locations that can be applied to new collections of yeast images (e.g. for different strains or the same strain under different conditions). It is also important to note that this performance could be achieved without requiring colocalization with any marker proteins. AVAILABILITY: The original images analyzed in this article are available at http://yeastgfp.ucsf.edu, and source code and results are available at http://murphylab.web.cmu.edu/software.  相似文献   

11.
12.
One of the most important objects in bioinformatics is a gene product (protein or RNA). For many gene products, functional information is summarized in a set of Gene Ontology (GO) annotations. For these genes, it is reasonable to include similarity measures based on the terms found in the GO or other taxonomy. In this paper, we introduce several novel measures for computing the similarity of two gene products annotated with GO terms. The fuzzy measure similarity (FMS) has the advantage that it takes into consideration the context of both complete sets of annotation terms when computing the similarity between two gene products. When the two gene products are not annotated by common taxonomy terms, we propose a method that avoids a zero similarity result. To account for the variations in the annotation reliability, we propose a similarity measure based on the Choquet integral. These similarity measures provide extra tools for the biologist in search of functional information for gene products. The initial testing on a group of 194 sequences representing three proteins families shows a higher correlation of the FMS and Choquet similarities to the BLAST sequence similarities than the traditional similarity measures such as pairwise average or pairwise maximum.  相似文献   

13.
Correct annotation of genes encoding release factors in bacterial genomes is often complicated by utilization of +1 programmed ribosomal frameshifting during synthesis of release factor 2, RF2. In the absence of robust computational approaches for predicting ribosomal frameshifting, the success of proper annotation depends on annotators' familiarity with this phenomenon. Here we describe a novel computer tool that allows automatic discrimination of genes encoding class-I bacterial release factors, RF1, RF2 and RFH. Most usefully, this program identifies and automatically annotates +1 frameshifting in RF2 encoding genes. Comparison of ARFA performance with existing annotations of bacterial genomes revealed that only 20% of RF2 genes utilizing ribosomal frameshifting during their expression are annotated correctly. AVAILABILITY: The PHP based web interface of ARFA and the source code are located at http://recode.genetics.utah.edu/arfa  相似文献   

14.
Bacterial porin proteins allow for the selective movement of hydrophilic solutes through the outer membrane of Gram-negative bacteria. The purpose of this study was to clarify the evolutionary relationships among the Type 1 general bacterial porins (GBPs), a porin protein subfamily that includes outer membrane proteins ompC and ompF among others. Specifically, we investigated the potential utility of phylogenetic analysis for refining poorly annotated or mis-annotated protein sequences in databases, and for characterizing new functionally distinct groups of porin proteins. Preliminary phylogenetic analysis of sequences obtained from GenBank indicated that many of these sequences were incompletely or even incorrectly annotated. Using a well-curated set of porins classified via comparative genomics, we applied recently developed bayesian phylogenetic methods for protein sequence analysis to determine the relationships among the Type 1 GBPs. Our analysis found that the major GBP classes (ompC, phoE, nmpC and ompN) formed strongly supported monophyletic groups, with the exception of ompF, which split into two distinct clades. The relationships of the GBP groups to one another had less statistical support, except for the relationships of ompC and ompN sequences, which were strongly supported as sister groups. A phylogenetic analysis comparing the relationships of the GenBank GBP sequences to the correctly annotated set of GBPs identified a large number of previously unclassified and mis-annotated GBPs. Given these promising results, we developed a tree-parsing algorithm for automated phylogenetic annotation and tested it with GenBank sequences. Our algorithm was able to automatically classify 30 unidentified and 15 mis-annotated GBPs out of 78 sequences. Altogether, our results support the potential for phylogenomics to increase the accuracy of sequence annotations.  相似文献   

15.
16.
17.
MOTIVATION: Despite advances in the gene annotation process, the functions of a large portion of gene products remain insufficiently characterized. In addition, the in silico prediction of novel Gene Ontology (GO) annotations for partially characterized gene functions or processes is highly dependent on reverse genetic or functional genomic approaches. To our knowledge, no prediction method has been demonstrated to be highly accurate for sparsely annotated GO terms (those associated to fewer than 10 genes). RESULTS: We propose a novel approach, information theory-based semantic similarity (ITSS), to automatically predict molecular functions of genes based on existing GO annotations. Using a 10-fold cross-validation, we demonstrate that the ITSS algorithm obtains prediction accuracies (precision 97%, recall 77%) comparable to other machine learning algorithms when compared in similar conditions over densely annotated portions of the GO datasets. This method is able to generate highly accurate predictions in sparsely annotated portions of GO, where previous algorithms have failed. As a result, our technique generates an order of magnitude more functional predictions than previous methods. A 10-fold cross validation demonstrated a precision of 90% at a recall of 36% for the algorithm over sparsely annotated networks of the recent GO annotations (about 1400 GO terms and 11,000 genes in Homo sapiens). To our knowledge, this article presents the first historical rollback validation for the predicted GO annotations, which may represent more realistic conditions than more widely used cross-validation approaches. By manually assessing a random sample of 100 predictions conducted in a historical rollback evaluation, we estimate that a minimum precision of 51% (95% confidence interval: 43-58%) can be achieved for the human GO Annotation file dated 2003. AVAILABILITY: The program is available on request. The 97,732 positive predictions of novel gene annotations from the 2005 GO Annotation dataset and other supplementary information is available at http://phenos.bsd.uchicago.edu/ITSS/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

18.
19.
Many sequenced genes are mainly annotated through automatic transfer of annotation from similar sequences. Manual comparison of results or intermediate results from different tools can help avoid wrong annotations and give hints to the function of a gene even if none of the automated tools could return any result. AFAWE simplifies the task of manual functional annotation by running different tools and workflows for automatic function prediction and displaying the results in a way that facilitates comparison. Because all programs are executed as web services, AFAWE is easily extensible and can directly query primary databases, thereby always using the most up-to-date data sources. Visual filters help to distinguish trustworthy results from non-significant results. Furthermore, an interface to add detailed manual annotation to each gene is provided, which can be displayed to other users.  相似文献   

20.
Large-scale annotation efforts typically involve several experts who may disagree with each other. We propose an approach for modeling disagreements among experts that allows providing each annotation with a confidence value (i.e., the posterior probability that it is correct). Our approach allows computing certainty-level for individual annotations, given annotator-specific parameters estimated from data. We developed two probabilistic models for performing this analysis, compared these models using computer simulation, and tested each model's actual performance, based on a large data set generated by human annotators specifically for this study. We show that even in the worst-case scenario, when all annotators disagree, our approach allows us to significantly increase the probability of choosing the correct annotation. Along with this publication we make publicly available a corpus of 10,000 sentences annotated according to several cardinal dimensions that we have introduced in earlier work. The 10,000 sentences were all 3-fold annotated by a group of eight experts, while a 1,000-sentence subset was further 5-fold annotated by five new experts. While the presented data represent a specialized curation task, our modeling approach is general; most data annotation studies could benefit from our methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号