首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new steroidal saponins, 25(R)-3β [(O-β-d-glucopyranosyl-(1  3)-β-d-glucopyranosyl-(1  2)-O-[β-d-xylopyranosyl-(1  3)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranosyl)oxy]-5α, 15β, 22R, 25R-spirostan-3,15-diol (1, named parquispiroside) and 25R-26-[(β-d-glucopyranosyl)Oxy]-(3β [(O-β-d-glucopyranosyl-(1  3)-β-d-glucopyranosyl-(1  2)-O-[β-d-xylopyranosyl-(1  3)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranosyl)oxy], 5α, 15β, 22R, 25R)-furostane-3,15,22-triol (2, named parquifuroside), along with the known saponins, capsicoside D (3) and 22-OMe-capsicoside D (4) and the known glycoside, benzyl primeveroside (5), were isolated from the leaves of Cestrum parqui. The structures of these compounds were elucidated by careful analysis of 1D and 2D NMR spectra and ESIMS data. Parquispiroside (1) exhibited moderate inhibition of Hela, HepG2, U87, and MCF7 cell lines with IC50 values in the range of 3.3–14.1 μM.  相似文献   

2.
Thirty-six naturally occurring compounds, including four C10-acetylenic glycosides and a lignan, were isolated from the whole plants of Saussurea cordifolia. Their structures were elucidated by means of spectroscopic and chemical methods to be 4,6-decadiyne-1-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (1), 4,6-decadiyne-1-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (2), (8E)-decaene-4, 6-diyn-1-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (3), (8Z)-decaene-4,6-diyn-1-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (4), and (2R, 3S, 4S)-4-(4-hydroxy-3-methoxybenzyl)-2-(5-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-tetrahydrofuran-3-ol (5).  相似文献   

3.
Five new steroidal saponins were isolated from the fruits of Tribulus terrestris. Their structures were fully established by spectroscopic and chemical analysis as (23S,25S)-5α-spirostane-24-one-3β,23-diol-3-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  4)]-β-d-galactopyranoside} (1), (24S,25S)-5α-spirostane-3β,24-diol-3-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  4)]-β-d-galactopyranoside} (2), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-2α,3β,22α,26-tetraol-3-O-{β-d-glucopyranosyl-(1  2)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranoside} (3), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-20(22)-en-2α,3β,26-triol-3-O-{β-d-glucopyranosyl-(1  2)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranoside} (4), and 26-O-β-d-glucopyranosyl-(25S)-5α-furostan-12-one-22-methoxy-3β,26-diol-3-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  4)]-β-d-galactopyranoside} (5). The isolated compounds were evaluated for cytostatic activity against HL-60 cells.  相似文献   

4.
A phytochemical analysis of the bulbs of Allium vavilovii M. Pop. & Vved. was attained for the first time extensively, affording to the isolation of four new furostanol saponins, named vavilosides A1/A2–B1/B2 (1a/b–2a/2b), as two couple of isomers in equilibrium, together with ascalonicoside A1/A2 (3a/3b) and 22-O-methyl ascalonicoside A1/A2 (4a/4b), previously isolated from shallot, Allium ascalonicum. High concentrations of kaempferol, kaempferide, and kaempferol 4I-glucoside were also isolated. The chemical structures of the new compounds, established through a combination of extensive nuclear magnetic resonance, mass spectrometry and chemical analyses, were identified as (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-galactopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside A1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-galactopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside A2), (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-xylopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside B1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-xylopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside B2). The isolated saponins showed cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma, cell lines with the following rank: vaviloside B1/B2 > ascalonicoside A1/A2 > vaviloside A1/A2.  相似文献   

5.
Two new dammarane saponins, 2α,3β,12β-trihydroxydammar-20(22),24-diene-3-O-[β-d-glucopyranoxyl(1→2)-β-d-6″-O-acetylglucopyranoside (1, namely damulin C) and 2α,3β,12β-trihydroxydammar-20(21),24-diene-3-O-[β-d-glucopyranoxyl(1→2)-β-d-6″-O-acetylglucopyranoside (2, namely damulin D), were isolated from the ethanol extract of Gynostemma pentaphyllum, which had been heat processed by steaming at 125 °C. The NMR spectroscopic data of the novel saponins were completely assigned by using a combination of 2D NMR experiments including 1H–1H COSY, HSQC, and HMBC. Their cytotoxic activities of human liver adenocarcinoma HepG2 cells were evaluated in vitro. They showed cytotoxicities against HepG2 cell line with IC50 of 40 ± 0.7 and 38 ± 0.5 μg/ml, respectively.  相似文献   

6.
Grandulosides A-C, three new flavonoid glycosides, were isolated from the aerial parts of Graptophyllum grandulosum Turill and identified as chrysoeriol-7-O-β-d-apiofuranosyl-(1  2)-β-d-xylopyranoside (1), chrysoeriol-7-O-[4′′′-O-acetyl-β-d-apiofuranosyl-(1  2)]-β-d-xylopyranoside (2) and 7-O-α-l-rhamnopyranosyl-(1  6)-β-d-(4′′-Sodium hydrogeno sulfate) glucopyranoside (3). Four known compounds, chrysoeriol-7-O-β-d-xyloside (4), isorhamnetin-3-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (5), luteolin-7-O-β-d-apiofuranosyl-(1  2)-β-d-xylopyranoside (6) and sucrose (7) were also obtained. The structures of these compounds were established by interpretation of their spectral data, mainly HR-TOFESIMS, 1D-NMR (1H, 13C) and 2D-NMR (COSY, NOESY, HSQC and HMBC) and by comparison with the literature data.  相似文献   

7.
A facile and efficient way for the synthesis of cholestane and furostan saponin analogues was established and adopted for the first time. Following this strategy, starting from diosgenin, three novel cholestane saponin analogues: (22S,25R)-3β,22,26-trihydroxy-cholest-5-ene-16-one 22-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 11, (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 14 and (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 17, three novel furostan saponin analogues: (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 23, (22R,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 24 and (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 26, were synthesized ultimately. The structures of all the synthesized analogues were confirmed by spectroscopic methods. The S-chirality at C-22 of cholestane was confirmed by Mosher's method. The absolute configuration at C-22 of furostan saponin analogues was distinguished by conformational analysis combined with the NMR spectroscopy. The cytotoxicities of the synthetic analogues toward four types of tumor cells were shown also.  相似文献   

8.
A new dihydrochalcone, 2‘,4‘-dihydroxy-3‘-methoxy-3,4-methylenedioxy-8-hydroxymethylene dihydrochalcone 1 and two new steroidal saponins, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside 2, (25S)-ruscogenin-3-O-α-l-rhamnopyranosyl-(1  4)-β-d-glucopyranoside 3, together with three known steroidal saponins (25S)-ruscogenin-3-O-β-d-glucopyranoside 4, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 5 and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetrol-1-O-α-L-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 6 were isolated from the aerial parts of Sansevieria cylindrica. The structures of the new compounds were established by UV, IR, EI-MS, HR-ESI–MS as well as 1D (1H,13C and DEPT-135) and 2D (HSQC, HMBC and TOCSY) NMR spectral analysis. The isolated compounds 1-6 were assayed for in vitro cytotoxicities against the three human tumor cell lines HT116, MCF7 and HepG2. Compound 1 showed a moderate cytotoxicity against MCF7. Compounds 2, 3 and 6 exhibited moderate cytotoxicities against the three used cell lines and compound 5 showed marked cytotoxicities against all used cell lines.  相似文献   

9.
Two new pterosin glycosides, (2S,3S)-pterosin C 3-O-β-d-(4′-(E)-caffeoyl)-glucopyranoside (1) and (2S,3S)-pterosin C 3-O-β-d-(6′-(E)-p-coumaroyl)-glucopyranoside (2), were isolated from Pteris multifida (Pteridaceae) roots along with ten known pterosin compounds (312). The chemical structures of the isolated compounds were elucidated by extensive analysis of the 1D, 2D NMR, HRESIMS, and CD spectroscopic data. The cytotoxicities of 112 against HCT116 human colorectal cancer cell line were evaluated. Among the isolates, compound 1 showed moderate antiproliferative activity in HCT116 cells with an IC50 value of 8.0 ± 1.7 μM. Additionally, 1 induced the upregulation of the caspase-9 and procaspase-9 levels in Western blots and increased the annexin V/propidium iodide (PI)-positive cell population in flow cytometry.  相似文献   

10.
Nine acylated iridoid glycosides (19), five acylated rhamnopyranoses (1014) and verbascoside (15) were isolated from Gmelina arborea flowers, including 5 new compounds (1, 2, and 1012). The cytoprotective activity of 11 selected compounds (18, 10, 11, and 15) against CCl4-induced cytotoxicity on liver was determined. Compounds 1, 2, 4, 7, 8 and 15 displayed hepatoprotective activity. 6-O-α-l-(2″, 3″-di-O-trans-p-hydroxycinnamoyl)rhamnopyranosylcatalpol (2) exhibited the most potent cytoprotective effect with an EC50 value of 42.5 μM (SI = 19.3) compared with biphenyldimethylesterate (DDB, EC50 = 277.3 μM, SI = 9.8) and bicylo-ethanol (EC50 = 279.2 μM, SI = 12.2). Among the acylated iridoid glycosides, the compounds (2 and 8) containing phenolic hydroxy groups were more active than were those lacking them.  相似文献   

11.
Two new acylated flavonol pentaglycosides were isolated from the butanolic extract of Baphia nitida leaves by Sephadex LH-20 and preparative HPLC. Structural elucidation of kaempferol 3-O-β-d-xylopyranosyl(1  3)-(4-O-E-p-coumaroyl-α-l-rhamnopyranosyl(1  2))[β-d-glucopyranosyl(1  6)]-β-d-galactopyranoside-7-O-α-l-rhamnopyranoside (1) and kaempferol 3-O-β-d-xylopyranosyl(1  3)-(4-O-Z-p-coumaroyl-α-l-rhamnopyranosyl(1  2))[β-d-glucopyranosyl(1  6)]-β-d-galactopyranoside-7-O-α-l-rhamnopyranoside (2) was achieved using UV, NMR, and mass spectrometry, indicating the presence of trans or cis isomers of p-coumaric acid moiety in these novel structures. The antioxidant activity of the two compounds was assessed in the peroxynitrite assay.  相似文献   

12.
A 70% ethanol extract from the roots of Livistona chinensis has been investigated, led to the isolation of 18 compounds, including two new 6′-O-acyl-β-d-glucosyl-β-sitosterols, 6′-O-(2″-hydroxyheptadecanoyl)-β-d-glucosyl-β-sitosterol (1) and 6′-O-(icosa-9″Z,12″Z-dienoyl)-β-d-glucosyl-β-sitosterol (2), two new keto esters, ethyl 16-(dodeca-4″′Z,7″′Z-dienyl)-29-oxo-15-(tetradeca-5″Z,8″Z,11″Z-trienyl) triacontanoate (7), and 16-hydroxy-8-oxohexadecyl tetradecanoate (9), a new unsaturated fatty acid, tetracosa-(11Z,14Z,18Z)-trienoic acid (8), as well as a new fatty alcohol, 10-decylnonadecane-1,19-diol (10). The structures of new compounds were elucidated, based on spectroscopic and chemical methods. The antiproliferative activity against four human tumor cell lines (K562, HL-60, HepG2, and CNE-1) was evaluated. Four compounds (13, 5) showed potent antiproliferative effects with the IC50 of 10–100 μM. To our knowledge, this is the first report of the occurrence of 6′-O-acyl-β-d-glucosyl-β-sitosterol and 3-O-acyl-β-sitosterol in the genus Livistona. Keto fatty acids and their esters are also rare in higher plant.  相似文献   

13.
Megastigmane glycosides (15) together with seven (612) related known compounds were isolated from the whole plants of Gynostemma pentaphyllum. The structures were elucidated by means of spectroscopic methods, including 2D NMR, HR-ESIMS, and circular dichroism (CD), as well as chemical transformations to be (3R, 4R, 5S, 6S, 7E)-3,4,6-trihydroxymegastigmane-7-en-9-one-3-O-β-d-glucopyranoside (gynostemoside A, 1), (3S, 4S, 5R, 6R, 7E, 9R)-3,4,6,9-tetrahydroxymegastigmane-7-en-3-O-β-d-glucopyranoside (gynostemoside B, 2), (3S, 4S, 5S, 6S, 7E, 9R)-3,4,9-trihydroxymegastigmane-7-en-9-O-β-d-glucopyranoside (gynostemoside C, 3), (3S, 4S, 5S, 6S, 7E, 9R)-3,4,9-trihydroxymegastigmane-7-en-3-O-β-d-glucopyranoside (gynostemoside D, 4), and (3S, 4S, 5S, 6S, 7E, 9R)-3,4,9-trihydroxymegastigmane-7-en-4-O-β-d-glucopyranoside (gynostemoside E, 5), respectively.  相似文献   

14.
Two new penterpenoid saponins, hemsloside-Ma4 (1) hemsloside-Ma5 (2), and a new diterpenoid glycoside, hemsloside-Ma6 (3), were isolated from the rhizomes of Hemsleya chinensis. By detailed analysis of the NMR spectra and chemical methods, the structures of new compounds were determined to be 3-O-β-l-arabinopyranosyl-(1  3)-O-(6′-methyl ester)-β-d-glucuropyranosyl-oleanolic acid-28-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside (1), 3-O-β-l-arabinopyranosyl-(1  3)-O-(6′-methyl ester)-β-d-glucuropyranosyl-oleanolic acid-28-O-β-d-xylopyranosyl-(1  6)-O-β-d-glucopy-ranoside (2), and 13ϵ-hydroxylabda-8(17), 14-dien-18-oic acid-18-O-α-l-rhamnopyranosyl-(1  2)-O-β-d-glucopyranosyl-(1  4)-O-α-l-rhamnopyranoside (3). Diterpenoid-type compound (3) was isolated from Hemsleya genus for the first time.  相似文献   

15.
Two new ursane-type triterpene saponins, 3-O-β-d-glucopyranosyl(1  3)-[α-l-rhamnopyranosyl(1  2)]-α-l-arabinopyranosylurs-12,19(29)-dien-28-oic acid 28-O-α-l-rhamnopyranosyl(1  2)-β-d-glucopyranosyl ester (1) and 3-O-β-d-glucopyranosyl(1  3)-[α-l-rhamnopyranosyl(1  2)]-α-l-arabinopyranosyl-19α,20α-dihydroxyurs-12-en-28-oic acid 28-O-α-l-rhamnopyranosyl(1  2)-β-d-glucopyranosyl ester (2), along with thirteen known triterpene saponins were isolated from the n-BuOH part of the MeOH extraction of the leaves of Ilex kudingcha C.J. Tseng (also called “Ku-Ding-Cha”). The structures of new compounds were elucidated on the basis of detailed spectroscopic analysis, including HR-ESI-TOF-MS, 1D and 2D-NMR experiments, and by acid hydrolysis. All the compounds were screened for antiplatelet aggregation activity in vitro, and compounds 1, 2, 3, 7, 12 and 15 showed significant inhibition of platelet aggregation induced by ADP (5 μM) with IC50 values of 14.7 ± 3.7, 11.3 ± 2.5, 17.4 ± 4.6, 20.5 ± 3.1, 8.1 ± 1.5 and 18.9 ± 4.2 μM, respectively.  相似文献   

16.
Three new phenylethanoid glycosides, 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside A, 1), 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-glucopyranosyl-(1  4)-β-d-allopyranoside (hodgsonialloside B, 2) and 2-(3-methoxy-4-hydroxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside C, 3) were isolated from the leaves of Magnolia hodgsonii in addition to six known compounds, tyrosol 4-O-β-d-xylopyranosyl-(1  6)-β-d-glucopyranoside (4), kaempferol 3-O-neohesperidoside (5), kaempferol 3-O-rutinoside (6), kaempferol 3-O-α-l-rhamnopyranosyl-(1  2)-[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside (7), (+)-syringaresinol O-β-d-glucopyranoside (8), and oblongionoside C (9). The structure elucidation of these compounds was based on analyses of physical and spectroscopic data including 1D and 2D NMR experiments.  相似文献   

17.
A new complex triterpenoid saponin was isolated from the stem bark of Samanea saman by using chromatographic methods. Its structure was established as 3-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]-2,23-dihydroxy-(2β,3β,4α)-olean-12-en-28-oic acid O-β-d-glucopyranosyl-(1  3)-O-[O-β-d-glucopyranosyl-(1  4)]-O-6-deoxy-α-l-mannopyranosyl-(1  2)-6-O-[4-O-[(2E,6S)-2,6-dimethyl-1-oxo-2,7-octadienyl]-6-deoxy-α-l-mannopyranosyl)oxy]-β-d-glucopyranosyl ester (1). Structural elucidation was performed using detailed analyses of 1H and 13C NMR spectra including 2D NMR spectroscopic techniques and chemical conversions. The haemolytic activity of the saponin was evaluated using in vitro assays, and its adjuvant potential on the cellular immune response against ovalbumin antigen was investigated using in vivo models.  相似文献   

18.
Chemical investigation of Chrozophora tinctoria (L.) A. Juss. growing in Saudi Arabia revealed the isolation of two new acylated flavonoids identified as acacetin-7-O-β-d-[α-l-rhamnosyl(1  6)]3″-E-p-coumaroyl glucopyranoside (4) and apigenin-7-O-(6″-Z-p-coumaroyl)-β-d-glucopyranoside (5), in addition to amentoflavone (1), apigenin-7-O-β-d-glucopyranoside (2), apigenin-7-O-6″-E-p-coumaroyl-β-d-glucopyranoside (3) and rutin (6). The structures of isolated compounds were established by 1D, 2D NMR and HRESIMS spectral data, in addition to comparison with literature data. The anti-inflammatory activities of isolated compounds were assessed by measuring the levels of IL-1β, IL-6, TNF-α and PGE2 in the supernatant media of human peripheral blood mononuclear cells (PBMCs) stimulated by phytohaemagglutinin (PHA). At a concentration of 100 μM, compounds 1, 2, 4 and 6 significantly decreased Il-1β, Il-6 and PGE2 to nearly normal values. All tested compounds caused a dose-dependent decrease in TNF-α level but failed to reach that of the control values.  相似文献   

19.
Phytochemical investigations of the aqueous extract of Planchonia careya leaves revealed two known flavonol glycosides, kaempferol 3-O-gentiobioside (1) and quercetin 3-O-glucoside (isoquercitrin) (2), and a novel acylated kaempferol tetraglycoside, kaempferol 3-O-[α-rhamnopyranosyl(1  3)-(2-O-p-coumaroyl)]-β-glucopyranoside, 7-O-[α-rhamnopyranosyl-(1  3)-(4-O-p-coumaroyl)]-α-rhamnopyranoside (3). Structural elucidation was achieved using UV, NMR, and mass spectrometry.  相似文献   

20.
Six new vibsane-type diterpenoids, named neovibsanin O (1), neovibsanin M (2), neovibsanin L (3), (8Z)-neovibsanin M (4), 15-O-methylvibsanin H (5), and 5-epi-15-O-methylvibsanin H (6), were isolated from the leaves of Viburnum sieboldii by bioassay-guided fractionation using NGF-differentiated PC12 cells. The structures of 16 were established by analyzing their spectroscopic data and comparing their NMR data with those of previously reported vibsane-type diterpenoids. Compounds 3 and 4, and the known vibsane-type diterpenoids neovibsanins A (7) and B (8) significantly enhanced the neurite outgrowth of NGF-mediated PC12 cells at concentrations ranging from 20 to 40 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号